Wednesday, February 29, 2012

Good Deeds, Good Science: Autism Research Foundation


Happy Leap Day!



How often have you wished for an extra hour or extra day to get everything you need done? At the Autism Science Foundation (ASF), we want to make the most of this special leap day by using it to help autism science leap forward.

Thanks to your support, for the last two years we have provided funding for autism stakeholders (parents, individuals with autism, teachers, students, etc) to attend the International Meeting for Autism Research (IMFAR). All donations made today, February 29, 2012, will go directly to our IMFAR Travel Grants program, helping us provide more scholarships to IMFAR 2012 in Toronto where they will share their real world autism experience with scientists. These stakeholders will then bring the latest autism science back into our communities helping the science take a giant leap forward.

After attending IMFAR, past grant recipients have:
- Organized a five day autism science seminar at Barnard College
- Presented critical autism research information to nurses in Philadelphia
- Produced multiple blog posts that reached thousands of readers around the world
- Organized an autism awareness club and speaker series at Yale College

And thanks to a generous donor, all donations made today (February 29, 2012) will be matched dollar for dollar for an extra big leap. 

Do something special with this extra day of 2012 and help leap science forward. Please make a donation today!

BTW - It’s no coincidence that applications for our IMFAR travel grants are due today. Thinking of applying? Click here to learn more.


The Autism Science Foundation was founded in 2009 as a nonprofit corporation organized for charitable and educational purposes, and exempt from taxation under section 501(c)(3) of the IRS code.
The Autism Science Foundation's mission is to support autism research by providing funding and other assistance to scientists and organizations conducting, facilitating, publicizing and disseminating autism research. The organization also provides information about autism to the general public and serves to increase awareness of autism spectrum disorders and the needs of individuals and families affected by autism.

Friday, February 24, 2012

Good Deeds, Good Science: IAmScience Kickstarter


Kevin Zelnio, husband, father, musician, scientist, human.


As someone who is not only into science, but also does science, I was over the moon to see the #IAmScience hashtag in my tweet stream on the evening of January 26th, 2012.  This is because, like hundreds, if not thousands, of others, my trajectory into science did not necessarily follow the stereotypical blueprint associated with becoming a scientist.  Furthermore, and quite frankly, I am sick of what people think scientists should look and act like.   

It all started with this harsh yet honest post from Zuska, in which she admitted to disliking the Science Online 2012 keynote speaker, Mireya Mayor, just because of her femininity.  It took some deduction and self-observation to figure out exactly why Zuska had a negative reaction to Mayor, and her post inspired others to admit, although somewhat abashedly, that they felt similarly.

Naturally, this sparked quite a discussion within the scicomm community, and also facilitated several tangible reactions, including the Double Xpression: Profiles of Women into Science series on Double X Science and Allie Wilkinson’s This Is What A Scientist Looks Like tumblr.  But, perhaps the most heartfelt and inspiring movement coming out of this discussion is Kevin Zelnio’s baby, #IAmScience

In the events leading up to #IAmScience, Zelnio asks why the scicomm community was so bothered by Mayor and her keynote address.  His point, which was well said despite of the 140 character limitation, basically called out those who weren’t practicing what they preached.



This was followed by a brutally honest recap of how Zelnio made his way into science, which included drug use, homelessness, and violent behavior. 



And, suddenly, #IAmScience became a movement.



Because of the roaring success of #IAmScience, Zelnio is looking to expand the movement’s reach.  He has launched an #IAmScience Kickstarter project, which, if funded, will lead to an eBook containing individual #IAmScience stories:

The goal of the I am Science storytelling is to break down the scientist stereotype and highlight how much diversity of backgrounds really exist in science, where stereotypes in Hollywood and the media have done massive damage to the field. To reduce barriers to accessing this resource, the e-book will be made freely available for all major digital platforms (Kindle, iPad, Nook, pdf).

We at Double X Science believe in the breaking down of stereotypes when it comes to science and scientists, and we encourage you to donate to this worthy cause.  For a closer look at the #IAmScience stories, you can check out the IAmScience Tumblr, or read Emily Willingham’s touching and poetic post about her science experience. 

Making these types of stories available to the public will do nothing short of inspire – and this may be the deciding factor for a career in STEM for those living a life where no inspiration can be readily found.  Together, we can make a difference, one IAmScience story at a time.

To back Kevin Zelnio’s Kickstarter project, visit the IAmScience Kickstarter page. 


IAmScience vimeo is by Mindy Weisberger.    
     

Tuesday, February 21, 2012

Notable Women in Science: Historical Physicists

Featured today are 10 more women who broke boundaries by their presence in physics. They lived from 1711 to 2000. While I again limited information to one paragraph, I tried to highlight how they got their start, what universities, family members, and scientists were supportive of them. For these women, without the support of fathers, mothers, husbands, and mentors (all male with one exception) their life in science would not have happened. While barriers are not as difficult today as they were at the times these women made their way, it is a testament to what can be done when families and scientists support each other. These women are an inspiration and I hope you look up more information for them. In addition, I'd love to hear who your favorite women in science are in the comments.

Laura Bassi by Carlo Vandi 
Laura Bassi (1711-78) lectured on science until a few hoursbefore her death. An Italian scientist of international fame and one of the first women physicists in western history, Dr. Bassi earned her doctorate in philosophy and science through public debate from the University of Bologna. The University of Bologna offered Dr. Bassi a position in an effort to be known as a leader in women’s education. Unfortunately, this forward step was not acceptable to much of the rest of the world’s academic community and required stipulations to Dr. Bassi teaching. However, she countered these limitations with determination and passion. Her appointment to full membership in the Bendettini Academics also deterred some naysayers of Dr. Bassi’s involvement in research and teaching. In order to further her career, she married. A married woman could achieve more than a single woman at that time. Her death in 1778 was unexpected, especially as she had participated in an Academy of Sciences lecture on a few hours before.

If you can access the full article, I highly recommend The Desire to Contribute: AnEighteenth-Century Italian Woman of Science by Gabriella Berti Logan for more information on Laura Bassi.

Margaret Eliza Maltby (1860-1944) was a recognized scientistand advocate for women in science. She overcame the education offered to women by taking extra courses in order to attend Oberlin College and receive a B.A. She studied with the Art Students’ League in New York City to explore her interest in art and then taught high school before enrolling as a “special student” at the Massachusetts Institute of Technology (MIT), receiving her B.S. Oberlin recognized this extra effort by awarding Dr. Maltby an M.S. She became a physics instructor at Wellesley College. She was encouraged in her graduate students by an AAUW fellowship to attend Göttingen University, which culminated in Dr. Maltby being the first American woman to receive a Ph.D. in physics from any German university. Dr. Maltby worked as an instructor, a researcher, and administrator in many universities and colleges in the U.S. and abroad. Her stature as a scientist was acknowledged with her entry in the first edition of AmericanMen of Science. She also was active in the AAUW, advocating for women to gain education and enter scientific fields. After her retirement from university life, she maintained her interest in the arts.

Frederic and Irene Joliot-Cure by By James Lebenthal
Irène Joliot-Curie (1897-1956) was a Nobel Prize Laureate for "artificial radioactivity."  Born to  the woman every person thinks of as the epitome of a woman in science, Marie Curie, Irène had an extremely close relationship with her paternal grandfather. Her schooling was outside of the standard schooling type, her first years at home and her latter years in a science and math heavy co-operative school of Madame Curie’s colleagues. She received her Bachelor’s degree from the Collège Sévigné and went on to study at the Sorbonne. She received her doctorate in 1925 based on work with her mother at the Radium Institute of the Sorbonne. She married Frédéric Joliot, another research assistant of Madame Curie’s. Dr. Joliot-Curie continued her research, interrupted by a stint as Undersecretary of State for Scientific Research, one of the first high government posts to be offered to a woman. She worked as a professor for the Sorbonne and director of the Radium Institute, but was not admitted to the Academy of Sciences due to discrimination despite her work. She died, like her mother, of acute leukemia. Her scientific work was complemented by her love of physical activity and motherhood.

Katharine Burr Blodgett By Smithsonian Institution, U.S.
Katharine Burr Blodgett (1898-1979) was a woman with an amazing number of firsts.  Born to a widow, she was a world citizen in her formative years, attended high school at a private school in New York City, won a scholarship to attend Bryn Mawr, and graduated second in her class there. She received her Master’s degree from the University of Chicago, then headed off to work with Nobel Laureate Irving Langmuir at General Electric (GE) and becoming the first woman research scientist there. She was able to work with Nobel Laureate Sir Ernest Rutherford and earn her Ph.D. from Cambridge University as the first woman to earn a doctorate from Cambridge. She returned to GE. During her career, she invented many applications and is credited with six patents. She achieved much when many women did not, but her work was de-valued in the media. She did earn recognition from her peers, including the ACS Garvan Medal, the Photographic Society of America Progress Medal, and a day named after her in her hometown of Schenectady, NY. In addition to her scientific life, she enjoyed gardening, civic engagement, acting, and “dart[ing] about Lake George in a fast motor boat.”

Astrophysicist Charlotte Emma Moore Sitterly (1898-1990) was an authority on sun composition. She started her career as an excellent student with extracurricular interests, attending Swarthmore College to earn her B.A. Upon graduation, she accepted a position as a mathematics computer at Princeton University Observatory, one of the few employment opportunities available to science inclined women at the time. A stint at the Mount Wilson Observatory led to results published a 1928 monograph which was considered the authoritative work on the solar spectrum for four decades. She received her Ph.D. from the University of California, Berkeley in 1931. Her work earned her the Annie J. Cannon Prize, Silver and Gold Medals from the Department of Commerce, and several honorary doctorates in the U.S. and abroad. She was the first woman elected foreign associate by the Royal Astronomical Society of London. Her enthusiasm for her work continued until her death.

Maria Goeppert-Mayer By Nobel Foundation
Nuclear Physicist Maria Goeppert-Mayer (1906-1972)  was the second woman to win the  physics NobelHer early education was public education for girls followed by a private school founded by suffragettes. Circumstances led Dr. Goeppert-Mayer to take her exiting exams a year early, passing them she attended the University of Göttingen for her college education in mathematics. She continued to study physics at the University of Göttingen, earning her Ph.D. in 1930. She also married that year. The couple moved to America in hopes of better career trajectory for Dr. Goeppert-Mayer. Finding a position was difficult. When she had her first child, she stayed home with her for one year, then returned to research. While her positions were always part-time and not well recognized, she grew a well-respected network of collaborators. This network led to work with Hans Jensen which won her the Nobel Prize, shared with Jensen. Her network also eventually led to a full professorship position after 20 years of volunteer work. During this time, her health began to fail. She persevered with her work, publishing her last paper in 1965. The American Physical Society established an award in her honor in1985

Gertrude Scharff Goldhaber (1911-1998) was a respected researcher. She grew up in a time in Germany where girls were expected to become schoolteachers. She had a fascination with numbers, and eventually studied physics at the University of Munich, receiving her PhD in 1935. She fled Germany during the rise of the Nazis due to being Jewish, arriving in the United States and becoming a citizen in 1944. She had a wide involvement in the various National Laboratories studying nuclear physics. She also maintained several committee positions in the science community. She was also a strong advocate for women in the science community, forming a Women in Science group at Brookhaven National Lab and supporting other similar groups elsewhere. After her retirement from research, she continued interests in the history of science, outdoor activities, and art.

The Chicago Pile One Team 
Physicist, Molecular Spectroscopist Leona Woods MarshallLibby (1919-1986) Leona Woods grew up on a farm and was known for her inexhaustible energy. She attained her B.S. in chemistry from the University of Chicago when she was only 19 years old, and earned her PhD 5 years later. She worked as the only woman and youngest member of the Chicago Metallurgical Laboratory, a secret war group led by Enrico Fermi who built the world’s first nuclear fission reactor during her graduate work. Dr. Woods’ expertise was essential to the undertaking. She married another member of her team. She hid her first pregnancy until 2 days before her son’s birth. She took one week off before returning to work. Childcare was provided by her mother and sometimes Fermi’s bodyguard, John Baudino. Dr. Marshall was encouraged by Fermi as a female physicist. In the late 1950s, Dr. Marshall was divorced from her husband, pursuing her own career. In the early 1960s, Dr. Marshall moved to Colorado to work and married Willard Libby. Her mind was always considering any number of problems from many angles. She worked up until her death and was honored posthumously for her work, along with Lise Meitner, Marie Curie, and Irene Joliot-Curie.

Chien-Shiung Wu 
Chien-Shiung Wu (1912-1997) was a foremost experimental physicist of modern eraShe was encouraged as a girl to pursue her schooling as far as possible. This led her to teaching training, which lacked science so she taught herself physics, chemistry, and mathematics. She graduated high school with the highest grades in her class, earning her a place at the National Central University in Nanjing. She taught and did research upon graduation, then moved to the United States to pursue graduate studies. She earned her Ph.D. from the University of California – Berkeley in 1940, four years after leaving China. She was known for her expertise in nuclear fission and was consulted by top scientists. Despite this, her gender and nationality hindered her finding appropriate employment due to discrimination on both accounts. She married and started a teaching career, although she missed research. Upon the recommendation of Ernest Lawrence, she received offers from several Ivy League schools who were not accepting female students at the time. She became Princeton’s first woman instructor at that time. She was offered several positions, including back in China, but chose to remain in the U.S. to raise her son. She was unable to return to China until 1973. She worked at Columbia for many decades and earned accolades for her work.

Xide Xie (1921-2000) is a woman in China who needs no introductionHer early life involved much moving due to war and ill health, during which she taught herself English, calculus, and physics. She graduated in 1942 with a degree from Xiamen University. She moved to the United States to receive her master’s degree from Smith College in 1949 and her Ph.D. in physics from M.I.T. in 1951. She married in England and returned to China, despite the political climate. She taught and did research at the prestigious Fudan University. During the Cultural Revolution of 1966-76, she was detained, publicly humiliated, and endured breast cancer. After this upheaval, she returned to Fudan University, growing the physics department and achieving more esteemed positions in the University and government. She had also remained connected to her family, caring for her husband through lengthy illness. Her achievements were internationally recognized.

Awards Mentioned
Benedettini Academics were a select group of scholars from the Academy of Sciences created and named for Pope Benedict XIV to conduct research and present it annually at Academy meetings. This appointment escalated the prestige of the scientist above that given by being a member of the Academy of Sciences.

American Association for University Women (AAUW): Margaret Maltby received the European Fellowship from the Association of Collegiate Alumnae, which became the AAUW. This fellowship was specifically intended to help American women pursue graduate studies to circumvent rules that did not allow women to enroll in coeducational universities or earn graduate degrees.

The Nobel Prize is an international award given in several fields. It is one of the most prestigious awards for scientists in the eyes of the public.

The Garvan Medal is an award from the American Chemical Society to recognize distinguished service to chemistry by women chemists.

The Photographic Society of AmericaProgress Medal recognized a person who has made an outstanding contribution to the progress of photography or an allied subject. 

Annie Jump Cannon Prize is given to a North American female astronomer in the early stages of her career for her distinguished contribution to the field.

Department of Commerce Silver Medal, Gold Medal are the highest honors granted by the department for distinguished and exceptional performance.

Much of the information for this post came from the book Notable Women in the Physical Sciences: A Biographical Dictionary edited by Benjamin F. Shearer and Barbara S. Shearer.
Images for this post came from Wikimedia Commons

Adrienne M Roehrich, Double X Science Chemistry Editor



Friday, February 17, 2012

Double Xpression: Mariette DiChristina


Mariette DiChristina is editor in chief of Scientific American.

[Ed. note: This interview is the second installment in our new series, Double Xpression: Profiles of Women into Science. The focus of these profiles is how women in science express themselves in ways that aren’t necessarily scientific, how their ways of expression inform their scientific activities and vice-versa, and the reactions they encounter.]

Today’s profile is an interview with Mariette DiChristina, editor in chief, Scientific American, who answered our questions via email with DXS Biology Editor Jeanne Garbarino. Read on to find out what a Marx Brothers movie has to do with communicating science.
                         
DXS: First, can you give me a quick overview of what your scientific background is and your current connection to science?

MD: Like most kids, I was born a scientist. What I mean is, I wanted to know how everything worked, and I wanted to learn about it firsthand. At a tag sale, for instance, I remember buying a second-hand biology book called The Body along with my second-hand Barbie for 50 cents. “Are you sure your mom is going to be OK with you buying that?” asked the concerned neighbor, eyeing the biology book.

I memorized the names and orbital periods of the planets and of dinosaurs like some kids spout baseball stats (which I could also do as a kid, by the way). We didn’t have a lot of money, so I caught my own pet fish from a nearby pond by using my little finger as a pretend worm. I scooped up my fish with an old plastic container and put it on my nightstand. If it died, I buried it and dug it up later so I could look at the bones. My proudest birthday gifts were when I got a chemistry set and a microscope with 750x. A girlfriend and I got the idea to pick up a gerbil that had a bad habit of biting fingers, just so we could get blood to squeeze on a glass slide. (She was braver than I was about being the one to get bitten.)

In middle school, I was a proud member of the Alchemists—an after-school science club—so I could do extra labs and clean the beakers and put away Bunsen burners for fun. I knew I would be a scientist when I grew up.

But somewhere during my high school courses, I came to believe that being a scientist meant I’d have to pick one narrow discipline and stick to it. I felt that I liked everything too much to do that, however. As an undergraduate, I eventually figured out that what I really wanted was to be a student of many different things for life, and then share those things I learned with others. That led me to a journalism degree. It also means that, as far as knowledge about science goes, I fit the cliché of being “an inch deep and a mile wide.”

DXS: What ways do you express yourself creatively that may not have a single thing to do with science?

MD: This one is a tough one for me to answer because I am always trying to convince people that pretty much everything they care about in the headlines actually has to do with science! In my case, I’ve also always been interested in drawing and in visuals in general. I was a pretty serious art student in high school as well, although I later decided that I didn’t have enough passion for it to make that my career choice. My interest in art partly led me to work at magazines like Scientific American and Popular Science, where the ability to storyboard an informational graphic and otherwise think visually is very helpful.

When I’m home, I really enjoy making things with my two daughters, such as helping them with crafts or scrapbooks, although I definitely spend a lot more time on planning dinners and cooking for (and with) the family than anything else. I like the puzzle solving of setting up the meals for the week during the weekend, so it’s easier for my husband to get things ready weeknights. We’re big on eating dinner together as a family every night. I like gardening and mapping out planting beds. I’m better at planting than at keeping up with tending, however, because of my intense work schedule and travel. In short, if I have free time at all, I’m enjoying it with my family. And if we’re doing some creative expression while we’re at it, great!

DXS: Do you find that your connection to science informs your creativity, even though what you do may not specifically be scientific?

MD: My connection to science informs most things that I do in one way or another. When I’m making dinner, I sometimes find myself talking about the chemistry of cooking with the girls. Especially when our daughters were smaller, if one of them had a question, I’d try to come up with ways to make finding the answer together into a kind of science adventure or project.

I suppose that since I spend most of my waking hours thinking about how best to present science to the public, it’s just a mental routine, or a lens through which I tend to view the world.

DXS: Have you encountered situations in which your expression of yourself outside the bounds of science has led to people viewing you differently--either more positively or more negatively?

MD: It’s more the other way around. I get amusing reactions from people once they find out what I do. How could I seem so normal and yet work in a field that relates to…shudder…science? An attorney friend has sometimes kidded me, saying there’s no way he can understand what’s in Scientific American, so I must be incredibly smart. I don’t feel that way at all! Anybody who has a high school degree and an interest in the topic can understand a feature article in Scientific American. Science is for everyone. And science isn’t only for people who work in labs. It’s just a rational way of looking at life. I also believe science is the engine of human prosperity. And if I sound a little evangelistic about that, well, I am.

DXS: Have you found that your non-science expression of creativity/activity/etc. has in any way informed your understanding of science or how you may talk about it or present it to others?

MD: I think it’s helpful to look to non-science areas for ideas about ways to help make science appealing, especially for people who might be intimidated by the subject. My main job is to try to make a connection for people to the science we cover in Scientific American. I once had a boss at Popular Science who made all us editors take an intensive, three-day screenwriting course that culminated in the showing and exposition, scene by scene, of the structure and writing techniques of Casablanca. When I came back, he gave me a big grin and said, “So, what did you think?” I got his point about bringing narrative techniques into feature articles. Like most people, I enjoy movies and plays; now I also look at them for storytelling tips. And there are lots of creative ways to tell science stories beyond words: pictures, slide shows, videos, songs. Digital media are so flexible.

DXS: How comfortable are you expressing your femininity and in what ways? How does this expression influence people’s perception of you in, say, a scientifically oriented context?

MD: I was the oldest of three daughters raised by a single dad (my mom died when I was 12) and I was always a tomboy, playing softball through college and so on. So I can’t say I’ve ever been terribly feminine, at least in the stereotypical ways. At the same time, I’m obviously a wife and a mother who, like most parents, tries not to talk about my kids so often that it’s irritating to friends and coworkers. I once was scolded in a letter from an irritated reader after I had mentioned my kids in a “From the Editor” column about education. He wrote that if I was so interested in science education and kids, I should go back home and “bake cookies.” I laughed pretty hard at that.

DXS: Do you think that the combination of your non-science creativity and scientific-related activity shifts people’s perspectives or ideas about what a scientist or science communicator is? If you’re aware of such an influence, in what way, if any, do you use it to (for example) reach a different corner of your audience or present science in a different sort of way?

MD: I’m sure that’s true. I think personality and approach also might shift perspectives. A girlfriend of mine once called me “the friendly face of science.” I guess I smile a lot, and I like to meet people and try to get to know them. That ability—being able to make a personal connection to different people—is important for every good editor. My job, essentially, is to understand your interests well enough to make sure Scientific American is something that you’ll enjoy each day, week, month.

Increasingly, also, the audiences are different in different media, so we need to understand how to flex the approach a bit to appeal to those different audiences. In print, for instance, according to the most recent data we have from MRI, the median age of Scientific American readers is 47, with 70 percent men and 30 percent women. The picture is quite different online, where, according to Nielsen, our median age is 40 and the male/female ratio is closer to half and half, with 56.5 percent men to 43.5 percent women. You need to bring a lot of creative thinking to the task of how to make one brand serve rather different sets of people.

Fortunately, I have terrific, creative staff! And another part of the way you do that, I think, is to invite your readers in to collaborate; we’ve done a bit of that in the past year on http://www.scientificamerican.com/, and I’m looking forward to experimenting further in the coming months. Ultimately, I’d like to turn Scientific American from a magazine with an amazing 166-year tradition of being a conduit of authoritative information about science and technology into a platform where curious minds can gather and share.

DXS: If you had something you could say to the younger you about the role of expression and creativity in your chosen career path, what would you say? 

MD: I was pretty determined to do something—whatever it was—that would let me satisfy my curiosity and passion about science. I would tell younger me, who, by the way, never intended to go into magazine management: It’s just as fun, rewarding and creative to be a science writer as you suspect it might be. I’d also tell the younger me something that didn’t occur to me early enough to pull it off—that a double major in journalism and science might be a good idea. And, I would add, it’s also a good idea to take some business classes, so you’ll be better armed for dealing with the working world.


Also on Double X Science


More about Mariette DiChristina

Mariette DiChristina oversees Scientific American, ScientificAmerican.com, Scientific American Mind and all newsstand special editions. She is the eighth person and first female to assume the top post in Scientific American's 166-year history. Under her leadership, the magazine received a 2011 National Magazine Award for General Excellence.

A science journalist for more than 20 years, she first came to Scientific American in 2001 as its executive editor. She is an advisor for the Citizen Science Alliance. She was named an AAAS Fellow in 2011. She was also the president (in 2009 and 2010) of the 2,500-member National Association of Science Writers. She was an adjunct professor in the graduate Science, Health and Environmental Reporting program at New York University for the several years. DiChristina is a frequent lecturer and has appeared at the New York Academy of Sciences, California Academy of Sciences, 92nd Street Y in New York, Yale University and New York University among many others.

Previously, she spent nearly 14 years at Popular Science in positions culminating as executive editor. Her work in writing and overseeing articles about space topics helped garner that magazine the Space Foundation's 2001 Douglas S. Morrow Public Outreach Award. In spring 2005 she was Science Writer in Residence at the University of Wisconsin-Madison. Her chapter on science editing appears in the second edition of A Field Guide for Science Writers. She is former chair of Science Writers in New York (2001 to 2004) and a member of the American Society of Magazine Editors and the Society of Environmental Journalists. DiChristina was honored by New York's Italian Heritage and Culture Committee in October 2009 for her contributions as an Italian American to science journalism and education in New York City. In January 2010, she was honored by the National Organization of Italian American Women as one as one of its "Three Wise Women" of 2009.

Tuesday, February 14, 2012

Pregnancy 101: Peas made me puke, but not just in the morning


Jeanne, would you like some...peeeaaasss?
License information here.
I was seven weeks deep when it hit me. Suddenly, I was in a chronic state of queasiness. Under most circumstances, I had it under control. Sure, I would gag every time I brushed my teeth, but (mostly) I could keep it all down. Then I went to my aunt Diane’s house for dinner.

Aunt Diane rolls with a crowd of self-made Italian chefs and, as a result, most of her cooking falls under the “rustic Italian” umbrella. It is not uncommon to see sitting in her cupboard a massive inventory of jarred plum tomatoes or for an entire section of her freezer to be dedicated to homemade vodka sauce, always frozen in those takeaway containers that originally brought us egg drop soup. Under normal circumstances, I’d be psyched to eat over.

I don’t recall the entire menu, but there is one side dish that has been forever burned into memory, and not in a good way. I remember starring at my plate, specifically at the heaping pile of sautéed peas. I kept rearranging the peas on my plate, sometimes spreading them out, sometimes piling them up. Then Diane looked at me and excitedly asked, “Jeanne, did you try my peas? I made them just for you!” I don’t know what compelled her to make these peas for me. Perhaps it was because I am a vegetarian and the rest of the meal involved meat? But, there they were, staring me down, and there Diane was, watching with anticipation, waiting for my approval.

Because I adore my aunt Diane and I wanted to make her happy (after all, she did just cook an entire meal for my small family), I scooped up a moderate amount of peas with my fork and deposited them in my mouth. I had to use every fiber of my being to chew them, and even more effort to actually swallow. My body was not cooperating and I had to implement a state of near meditation to keep them from coming back up. Luckily, I kept my cool and was able coerce my face into showing a smile while simultaneously telling my aunt and friend that her peas were delicious.

Credit: Jeanne Garbarino.
My husband picked up on my soaring level of discomfort and without missing a beat, ate all my peas when Diane wasn’t looking. We ended the evening with my stomach contents intact, but barely.

The next morning, as I was preparing my 18 month-old daughter’s daycare lunch, I remembered that we were provided with a parting gift of sautéed peas. I took them out of the fridge and proceeded to aliquot them into containers more suitable for a toddler. As I removed the lid, the onion-tinged aroma of Diane’s sautéed spring peas smacked me across my face. My body was clearly angry about what I had done to it the night before and, as if it were in a state of protest, I found myself sprinting to the bathroom where I began to puke.

From that day forth, I could not eat peas, let alone see or smell them, without eliciting extreme nausea. It didn’t matter what time of day, the mere presence of peas, although not necessary, was sufficient to make me toss my, well, peas.

That’s the funny thing about morning sickness – it isn’t just a morning thing.

What is morning sickness?

Tick-tock. Credit: Jeanne Garbarino
It has long been known that nausea and vomiting are common symptoms of pregnancy. In fact, documentation of this phenomenon goes as far back as 2000 BC. However, the term “morning sickness” is a complete misnomer. For one, pregnancy-related nausea and vomiting is not just a morning thing. It can happen at any time of day. Second, the term “sickness” suggests a state of unhealthiness. We know that perfectly healthy pregnant women who deliver perfectly healthy babies experience morning sickness, and this type of nausea and vomiting is not an indicator of maternal and/or fetal health.

But, that doesn’t change the fact that it sucks.

Morning sickness, more appropriately known as nausea and vomiting in pregnancy (NVP), affects approximately two-thirds of women in their first trimester of pregnancy. In many cases, morning sickness subsides at the end of the first trimester. In other cases, the symptoms of morning sickness can last for the entire pregnancy. For both my pregnancies, I experienced morning sickness for the first 5 months.

I feel so lucky.  

No one really knows the exact mechanisms responsible for the onset morning sickness. We do know that the drastic hormonal changes that occur during early pregnancy certainly play a role; however, these effects are likely indirect. For instance, estrogen levels do not differ between pregnant women with morning sickness and those who do not experience symptoms.  Furthermore, there is no causal relationship between human chorionic gonadotropin (hCG), the early pregnancy hormone detected by pregnancy tests, and morning sickness, despite the fact that peak hCG levels and peak severity of pregnancy-related nausea and vomiting occur at approximately the same time.

Based on these observations, scientists suggest that the hormonal fluctuations in pregnant women can elicit different responses in an individual, rendering some extremely susceptible and others remarkably resistant to the same stimulus (with regard to nausea and vomiting). This begs the question: Is there a genetic predisposition to morning sickness?

While a “morning sickness” gene has not been identified, a few lines of evidence point toward a potential for inheriting the tendency. For instance, identical twins, are fairly likely to share a tendency to morning sickness. Also, you are more likely to experience morning sickness if your mom experienced it, too. Even though genetics may be involved, the onset of morning sickness is probably what scientists call “multifactorial,” a result of a very complex interaction between genetics and environment, making it difficult to find a treatment that is effective and safe for everyone.

Until more is known, we are stuck eating saltines and sour candy. At least it’s something, right?

Right?

Food aversions and morning sickness

Make them if you dare. Credit: Jeanne Garbarino.
For my first pregnancy, it was smoked salmon, which I probably shouldn’t have been eating in the first place. For my second pregnancy, it was peas. (Interestingly, my aunt Diane initially provided both foods, which, after that initial consumption, was immediately followed by the onset of morning sickness.) The mere sight of either peas or smoked salmon elicited an uncomfortable queasiness that often culminated with a sprint to the porcelain throne. Apparently, this type of experience is pretty normal. 

Developing an aversion to a specific tastes and smells during pregnancy is an extremely common phenomenon. In fact, between 50–90% of pregnant women worldwide experience some level of food aversion, with the most common aversions being meat, fish, poultry, and eggs. Furthermore, research suggests that food aversions developed during pregnancy are actually novel as opposed to an exaggeration of a pre-existing dislike for a certain food.

Complementing the development of food aversions is the report that dietary changes in pregnant woman are often related to changes in olfaction, or sense of smell. More specifically, some pregnant women experience increased sensitivity to certain odors, and usually in an unpleasant way. This heightened sensitivity is thought to be protective against foods that could pose a problem for mother and baby, such as those that have become rancid.  

When I was pregnant, the self-perceived powerfully pungent scent of peas could have probably knocked me over if it was translated into some other physical force. I wish I had a gas mask.  

Is there some benefit to morning sickness?

In general, nausea and vomiting are a defense mechanism, acting to protect us from the accidental ingestion of toxins. While morning sickness is likely a very complicated condition that needs further study, a popular explanation suggests that morning sickness is beneficial to both mother and fetus.

Several lines of observations support this idea, formally called the “maternal and embryo protection hypothesis”: (a) peak sensitivity to morning sickness occurs at approximately the same time that embryo development is most susceptible to toxins and chemical agents; and (b) women who experience morning sickness during their pregnancy are less likely to miscarry compared to women who do not experience morning sickness.

In essence, the maternal and embryo protection hypothesis suggests that morning sickness is an adaptive process, contributing to evolutionary success (measured in terms of how many of your genes are present in later generations). However, morning sickness is not found in all societies. One possible explanation for this is that those societies that do not widely experience morning sickness are significantly more likely to have plant-based diets (meats spoil much faster than plants). Another argument against evolutionary adaptation is that morning sickness has been documented only in three other species: domestic dogs, captive rhesus macaques, and captive chimpanzees.  

It makes sense that the pregnancy-related nausea and vomiting widely known as morning sickness is a means to help protect mom and baby. It makes sense that women have a mechanism to detect and/or expel toxins and potentially harmful microorganisms if ingested. But the idea that morning sickness is actually a product of evolution is still under debate.

And even as a biologist, if I ever have to go through morning sickness again, the idea that it could be protective won’t really bring me comfort as I am puking up my guts. But, biology is biology and sometimes we just have to deal with it.

References
Andrews, P. and Whitehead, S. Pregnancy Sickness. American Physiological Society. 1990 February;5: 5-10.
Flaxman, S.M. and Sherman, P.W. Morning Sickness: A mechanism for protecting mother and baby. The Quarterly Review of Biology. 2000 June; 75(2):
Goodwin, TM. Nausea and vomiting of pregnancy: an obstetric syndrome. American Journal Obstetrics and Gynecology. 2002; 185(5): 184-189.
Kich, K.L. Gastrointestinal factors in nausea and vomiting of pregnancy. American Journal Obstetrics and Gynecology. 2002; 185(5): 198-203.
Nordin, S., Broman, D.A., Olofsson, J.K., Wulff, M. A Longitudinal Descriptive Study of Self-reported Abnormal Smell and Taste Perception in Pregnant Women. Chemical Senses. 2004; 29 (5): 391-402



Saturday, February 11, 2012

The real scandal: science denialism at Susan G. Komen for the Cure®


Double X Science is pleased to be able to repost, with permission, this important piece courtesy of author Christie Aschwanden and the Last Word on Nothing website, focused on the things that science teaches us we still don't know...but want to find out. 
You'll notice that the focus of this article is the way that the Komen foundation blames the individual with the disease for having it, relying on what Aschwanden aptly calls "breast cancer's false narrative." This "blame the person" tactic seems to be especially common in women's health, with an emphasis on the way a woman allegedly does the wrong thing or thinks the wrong thoughts or doesn't work hard enough willing herself well, making her disease her fault, instead of the fault of nature, mutations, cell division gone astray, and the countless other molecular factors that accumulate into what we call "disease." In the case of breast cancer, it's not one monolith of disease that the decision to screen will magically stop.
Many thanks to Christie Aschwanden and the Last Word on Nothing for graciously agreeing to this important repost. --The DXS Editors --------------------------------------------

Is breast cancer threatening your life? This Susan G. Komen for the Cure® ad leaves no doubt about who’s to blame —you are.
Over the last week or so, critics have found many reasons to fault Susan G. Komen for the Cure®. The scrutiny began with the revelation that the group was halting its grants to Planned Parenthood.  The decision seemed like a punitive act that would harm low-income women (the money had funded health services like clinical breast exams), and Komen’s public entry into the culture wars came as a shock to supporters who’d viewed the group as nonpartisan.* Chatter on the intertubes quickly blamed the move on Komen’s new Vice-President of Public Policy, Karen Handel, a failed GOP candidate who ran for governor in Georgia on a platform that called for defunding Planned Parenthood.** Komen’s founder, Ambassador Nancy Brinker, awkwardly attempted to explain the decision, and yesterday, Handel resigned her position. (Whether she’ll receive a golden parachute remains unclear, but former CEO Hala Moddelmog received $277,864 in 2010, despite her resignation at the end of 2009.)
The Planned Parenthood debacle brought renewed attention to other controversies that have hounded Komen in recent years—like its “lawsuits for the cure” program that spent nearly $1 million suing groups like “cupcakes for the cure” and “kites for the cure” over their daring attempts to use the now-trademarked phrase “for the cure.” Critics also pointed to Komen’s relentless marketing of pink ribbon-themed products, including a Komen-branded perfume alleged to contain carcinogens, and pink buckets of fried chicken, a campaign that led one rival breast cancer advocacy group to ask, “what the cluck?”
But these problems are minuscule compared to Komen’s biggest failing—its near outright denial of tumor biology. The pink arrow ads they ran in magazines a few months back provide a prime example. “What’s key to surviving breast cancer? YOU. Get screened now,” the ad says. The unmistakeable takeaway? It’s your fault if you die of cancer. The blurb below the big arrow explains why. “Early detection saves lives. The 5-year survival rate for breast cancer when caught early is 98%. When it’s not? 23%.”
If only it were that simple. As I’ve written previously here, the notion that breast cancer is a uniformly progressive disease that starts small and only grows and spreads if you don’t stop it in time is flat out wrong. I call it breast cancer’s false narrative, and it’s a fairy tale that Komen has relentlessly perpetuated.
It was a mistake that most everyone made in the early days. When mammography was new and breast cancer had not yet become a discussion for the dinner table, it really did seem like all it would take to stop breast cancer was awareness and vigilant screening. The thing about the false narrative is that it makes intuitive sense–a tumor starts as one rogue cell that grows out of control, eventually becoming a palpable tumor that gets bigger and bigger until it escapes its local environment and becomes metastatic, the deadly trait that’s necessary to kill you. And this story has a grain of truth to it—it’s just that it’s far more complicated than that.
Years of research have led scientists to discover that breast tumors are not all alike. Some are fast moving and aggressive, others are never fated to metastasize. The problem is that right now we don’t have a surefire way to predict in advance whether a cancer will spread or how aggressive it might become. (Scientists are working on the problem though.)
Some breast cancers will never become invasive and don’t need treatment. These are the ones most apt to be found on a screening mammogram, and they’re the ones that make people such devoted advocates of mammography.H. Gilbert Welch of the Dartmouth Institute for Health Policy and Clinical Practice, calls this the overdiagnosis paradox. Overdiagnosis is what happens when a mammogram finds an indolent cancer. A healthy person whose life was never threatened by breast cancer is suddenly turned into a cancer survivor. She thinks the mammogram saved her life, and so she becomes an advocate of the test.
Some cancers behave just the opposite of these slow-growing, indolent ones. Researchers now know that some cancers are extremely aggressive from the start. There’s simply no such thing as “early” detection for these cancers. By the time they’re detectable by any of our existing methods, they’ve already metastasized. These are the really awful, most deadly cancers, and screening mammograms*** will not stop them.
Then there are cancers that fall somewhere in between the two extremes. These are the ones most likely to be helped by screening mammography, and they’re the lives that mammography saves. How many? For women age 50 to 70, routine screening mammography decreases mortality by 15 to 20% (numbers are lower for younger women). One thousand women in their 50′s have to be screened for 10 years for a single life to be saved.
So let’s recap. Getting “screened now,” as the Komen ad instructs can lead to three possible outcomes. One, it finds a cancer than never needed finding. You go from being a healthy person to a cancer survivor, and if you got the mammogram because of Komen’s prodding, you probably become a Komen supporter. Perhaps a staunch one, because hey—they saved your life and now you have a happy story to share with other supporters. Another possibility is that the mammogram finds a cancer that’s the really bad kind, but you die anyway. You probably don’t die later than you would have without the mammogram, but it might look that way because of a problem called “lead time bias.” The third possibility is that you find a cancer that’s amenable to treatment and instead of dying like you would without treatment, your life is saved. Here again, you’re grateful to Komen, and in this case, your life truly was saved.
Right now, breast cancer screening sucks. It’s not very effective, and if you measure it solely based on the number of lives saved versus healthy people unnecessarily subjected to cancer treatments, it seems to cause more harm than good. For every life saved, about 10 more lives are unnecessarily turned upside down by a cancer diagnosis that will only harm them. In a study published online in November, Danish researchers concluded that, “Avoiding getting screening mammograms reduces the risk of becoming a breast cancer patient by one-third.”
But it’s not quite that simple. Some people really are helped by mammography screening, and if you’re the one helped, it’s hard to discount that one life. Right now mammography is the best tool we have. Welch, who has spent more time than probably anyone else in America studying this issue, has deemed the decision about whether or not to get breast cancer screening a “close call.”
Reasonable women can decide that for them, the potential benefits outweigh the risks. Other reasonable women will decide that for them, the risks outweigh the potential benefits.
Komen isn’t wrong to encourage women to consider mammography. But they’re dead wrong to imply that “the key to surviving breast cancer” is “you” and the difference between a 98% survival rate and a 23% one is vigilance on the part of the victim. This message flies in the face of basic cancer biology.
Between 2004 to 2009, Komen allocated 47% of it $1.54 billion toward education and screening.  Much of its education messaging promotes the same false narrative as its ads, which means they are not only not furthering the search for a cure, they are harming the cause. By implying that the solution to breast cancer is screening, Komen distracts attention from the real problem, which is that way too many women (and men) are still dying of breast cancer, and screening is not saving them. We still can’t prevent breast cancer, because we don’t know what causes it.
To explain why Komen’s fixation on an unscientific story matters, I want to introduce you to Rachel Cheetham Moro. Moro was a cancer blogger, but she won’t be weighing in on this latest Komen controversy, because she died Monday of metastatic breast cancer. Before she left us, she had plenty to say about the false narrative Komen was peddling. Last October she wrote,
How dare Komen so FALSELY suggest that a screening mammogram is all it takes to avoid metastatic breast cancer? How dare Komen so CRUELLY suggest that “not getting screened for breast cancer in time” would be THE reason and the FAULT of the person with metastatic disease who misses out on all the experiences and joyous events of a long and healthy life that so many others take for granted? How dare you, Komen? How dare you?
In August of 2009, I wrote about the overdiagnosis problem for the Los Angeles Times. I happened to be attending a conference with several executives from Komen. When I asked them about overdiagnosis, they were dumbfounded. They had no idea what I was talking about. Nor did they seem very interested. (Interestingly enough, two of these women were breast cancer survivors, and told me they’d found their cancers on their own–in the shower or the like–without a self-exam or mammogram.) VP of health sciences Elizabeth Thompson told me that they just needed to keep plugging their message— “early detection saves lives.”
By contrast, Komen’s chief scientific advisor, Eric Winer of the Dana-Farber Cancer Institute, was fully aware of the problem. He told me that “As painful as it is to admit, we have oversold mammography to the American public.”
That was more than two years ago. Why is Komen clinging to their denialist message? They owe Moro an answer.
Footnotes:
*In fact, Komen has a long and cozy association with the Republican Party. George W. Bush rewarded founder Nancy Brinker’s generous donations to the GOP—more than $175,000 since 1990—by awarding her an ambassadorship to Hungary in 2001 and later, the position of chief protocol officer. The Komen board has a couple women of color and several democrats, but ispredominately rich, white GOP donors.
**Apparently, some abortion foes think that eliminating Planned Parenthood would also abolish abortion. Will Saletan at Slate debunks this notion by explaining that the way to drive Planned Parenthood out of the abortion business is to give them more money.
***It’s important to distinguish a screening mammogram from a diagnostic one. Screening mammograms are done on women without any symptoms. A diagnostic mammogram is done to check out a suspicious lump. Disagreements over mammograms center over whether and how often women should have screening mammograms. Diagnostic mammograms are not in dispute. If you find a lump, you need a diagnostic mammogram.
For more on this issue, read Barbara Ehrenreich’s 2001 famous Harper’s piece,Welcome to Cancerland.
Photos:
Race for the Cure banner by Ladybugbkt (via Flickr)
Fnck cancer by Michaelhyman300 (via Flickr)
------------------------------------------------------------------------------------
Also on Double X Science
--------------------------------------------------------------------------------------
I’m an independent journalist, essayist and science nerd. I’ve written for more than 50 publications on topics ranging from placebos to prairie dogs, but I’m especially interested in belief, sense of place and the after-effects of war. I was a National Magazine Award finalist in 2011 and a Pulitzer Center for Crisis Reporting fellow in 2007.
I live on a small farm perched on a sunny slope of the Grand Mesa in western Colorado where my winemaker husband tends our vineyard, orchard and garden, and I raise a flock of heritage poultry. My coffee table book about chicken breeds, Beautiful Chickens, was published this year. WebsiteTwitter.


"Science says the first word on everything and the last word on nothing." Victor Hugo 
Science is first of all about discovery (the first word on everything). But the more science knows, the more it realizes what it doesn't know (the last word on nothing). Curiosity and humility: the human condition.