Pregnancy 101: Peas made me puke, but not just in the morning

Jeanne, would you like some…peeeaaasss?
License information here.
I was seven weeks deep when it hit me. Suddenly, I was in a chronic state of queasiness. Under most circumstances, I had it under control. Sure, I would gag every time I brushed my teeth, but (mostly) I could keep it all down. Then I went to my aunt Diane’s house for dinner.
Aunt Diane rolls with a crowd of self-made Italian chefs and, as a result, most of her cooking falls under the “rustic Italian” umbrella. It is not uncommon to see sitting in her cupboard a massive inventory of jarred plum tomatoes or for an entire section of her freezer to be dedicated to homemade vodka sauce, always frozen in those takeaway containers that originally brought us egg drop soup. Under normal circumstances, I’d be psyched to eat over.

I don’t recall the entire menu, but there is one side dish that has been forever burned into memory, and not in a good way. I remember starring at my plate, specifically at the heaping pile of sautéed peas. I kept rearranging the peas on my plate, sometimes spreading them out, sometimes piling them up. Then Diane looked at me and excitedly asked, “Jeanne, did you try my peas? I made them just for you!” I don’t know what compelled her to make these peas for me. Perhaps it was because I am a vegetarian and the rest of the meal involved meat? But, there they were, staring me down, and there Diane was, watching with anticipation, waiting for my approval.

Because I adore my aunt Diane and I wanted to make her happy (after all, she did just cook an entire meal for my small family), I scooped up a moderate amount of peas with my fork and deposited them in my mouth. I had to use every fiber of my being to chew them, and even more effort to actually swallow. My body was not cooperating and I had to implement a state of near meditation to keep them from coming back up. Luckily, I kept my cool and was able coerce my face into showing a smile while simultaneously telling my aunt and friend that her peas were delicious.

Credit: Jeanne Garbarino.
My husband picked up on my soaring level of discomfort and without missing a beat, ate all my peas when Diane wasn’t looking. We ended the evening with my stomach contents intact, but barely.

The next morning, as I was preparing my 18 month-old daughter’s daycare lunch, I remembered that we were provided with a parting gift of sautéed peas. I took them out of the fridge and proceeded to aliquot them into containers more suitable for a toddler. As I removed the lid, the onion-tinged aroma of Diane’s sautéed spring peas smacked me across my face. My body was clearly angry about what I had done to it the night before and, as if it were in a state of protest, I found myself sprinting to the bathroom where I began to puke.

From that day forth, I could not eat peas, let alone see or smell them, without eliciting extreme nausea. It didn’t matter what time of day, the mere presence of peas, although not necessary, was sufficient to make me toss my, well, peas.

That’s the funny thing about morning sickness – it isn’t just a morning thing.

What is morning sickness?

Tick-tock. Credit: Jeanne Garbarino
It has long been known that nausea and vomiting are common symptoms of pregnancy. In fact, documentation of this phenomenon goes as far back as 2000 BC. However, the term “morning sickness” is a complete misnomer. For one, pregnancy-related nausea and vomiting is not just a morning thing. It can happen at any time of day. Second, the term “sickness” suggests a state of unhealthiness. We know that perfectly healthy pregnant women who deliver perfectly healthy babies experience morning sickness, and this type of nausea and vomiting is not an indicator of maternal and/or fetal health.

But, that doesn’t change the fact that it sucks.

Morning sickness, more appropriately known as nausea and vomiting in pregnancy (NVP), affects approximately two-thirds of women in their first trimester of pregnancy. In many cases, morning sickness subsides at the end of the first trimester. In other cases, the symptoms of morning sickness can last for the entire pregnancy. For both my pregnancies, I experienced morning sickness for the first 5 months.

I feel so lucky.  

No one really knows the exact mechanisms responsible for the onset morning sickness. We do know that the drastic hormonal changes that occur during early pregnancy certainly play a role; however, these effects are likely indirect. For instance, estrogen levels do not differ between pregnant women with morning sickness and those who do not experience symptoms.  Furthermore, there is no causal relationship between human chorionic gonadotropin (hCG), the early pregnancy hormone detected by pregnancy tests, and morning sickness, despite the fact that peak hCG levels and peak severity of pregnancy-related nausea and vomiting occur at approximately the same time.

Based on these observations, scientists suggest that the hormonal fluctuations in pregnant women can elicit different responses in an individual, rendering some extremely susceptible and others remarkably resistant to the same stimulus (with regard to nausea and vomiting). This begs the question: Is there a genetic predisposition to morning sickness?

While a “morning sickness” gene has not been identified, a few lines of evidence point toward a potential for inheriting the tendency. For instance, identical twins, are fairly likely to share a tendency to morning sickness. Also, you are more likely to experience morning sickness if your mom experienced it, too. Even though genetics may be involved, the onset of morning sickness is probably what scientists call “multifactorial,” a result of a very complex interaction between genetics and environment, making it difficult to find a treatment that is effective and safe for everyone.

Until more is known, we are stuck eating saltines and sour candy. At least it’s something, right?

Right?

Food aversions and morning sickness

Make them if you dare. Credit: Jeanne Garbarino.
For my first pregnancy, it was smoked salmon, which I probably shouldn’t have been eating in the first place. For my second pregnancy, it was peas. (Interestingly, my aunt Diane initially provided both foods, which, after that initial consumption, was immediately followed by the onset of morning sickness.) The mere sight of either peas or smoked salmon elicited an uncomfortable queasiness that often culminated with a sprint to the porcelain throne. Apparently, this type of experience is pretty normal. 

Developing an aversion to a specific tastes and smells during pregnancy is an extremely common phenomenon. In fact, between 50–90% of pregnant women worldwide experience some level of food aversion, with the most common aversions being meat, fish, poultry, and eggs. Furthermore, research suggests that food aversions developed during pregnancy are actually novel as opposed to an exaggeration of a pre-existing dislike for a certain food.

Complementing the development of food aversions is the report that dietary changes in pregnant woman are often related to changes in olfaction, or sense of smell. More specifically, some pregnant women experience increased sensitivity to certain odors, and usually in an unpleasant way. This heightened sensitivity is thought to be protective against foods that could pose a problem for mother and baby, such as those that have become rancid.  

When I was pregnant, the self-perceived powerfully pungent scent of peas could have probably knocked me over if it was translated into some other physical force. I wish I had a gas mask.  

Is there some benefit to morning sickness?

In general, nausea and vomiting are a defense mechanism, acting to protect us from the accidental ingestion of toxins. While morning sickness is likely a very complicated condition that needs further study, a popular explanation suggests that morning sickness is beneficial to both mother and fetus.

Several lines of observations support this idea, formally called the “maternal and embryo protection hypothesis”: (a) peak sensitivity to morning sickness occurs at approximately the same time that embryo development is most susceptible to toxins and chemical agents; and (b) women who experience morning sickness during their pregnancy are less likely to miscarry compared to women who do not experience morning sickness.

In essence, the maternal and embryo protection hypothesis suggests that morning sickness is an adaptive process, contributing to evolutionary success (measured in terms of how many of your genes are present in later generations). However, morning sickness is not found in all societies. One possible explanation for this is that those societies that do not widely experience morning sickness are significantly more likely to have plant-based diets (meats spoil much faster than plants). Another argument against evolutionary adaptation is that morning sickness has been documented only in three other species: domestic dogs, captive rhesus macaques, and captive chimpanzees.  

It makes sense that the pregnancy-related nausea and vomiting widely known as morning sickness is a means to help protect mom and baby. It makes sense that women have a mechanism to detect and/or expel toxins and potentially harmful microorganisms if ingested. But the idea that morning sickness is actually a product of evolution is still under debate.

And even as a biologist, if I ever have to go through morning sickness again, the idea that it could be protective won’t really bring me comfort as I am puking up my guts. But, biology is biology and sometimes we just have to deal with it.

References

Andrews, P. and Whitehead, S. Pregnancy Sickness. American Physiological Society. 1990 February;5: 5-10.

Flaxman, S.M. and Sherman, P.W. Morning Sickness: A mechanism for protecting mother and baby. The Quarterly Review of Biology. 2000 June; 75(2):

Goodwin, TM. Nausea and vomiting of pregnancy: an obstetric syndrome. American Journal Obstetrics and Gynecology. 2002; 185(5): 184-189.

Kich, K.L. Gastrointestinal factors in nausea and vomiting of pregnancy. American Journal Obstetrics and Gynecology. 2002; 185(5): 198-203.

Nordin, S., Broman, D.A., Olofsson, J.K., Wulff, M. A Longitudinal Descriptive Study of Self-reported Abnormal Smell and Taste Perception in Pregnant Women. Chemical Senses. 2004; 29 (5): 391-402

Wordless Wednesday: The faces of the women and men in science, DXS edition

Meet Chris Gunter, science education editor for Double X Science! We (and you) are lucky to have her!
Read more about Chris on our About Us page.

Some of us got to meet at a conference for online science writers.
From left, DXS Physics Editor Matthew Francis, Biology Editor Jeanne Garbarino,
and Managing Editor Emily Willingham.

And a meme of that conference was #youvebeenframed. In this case, Emily Willingham was, with the
help of photographer and DXS Biology Editor Jeanne Garbarino. More of these
fun pics at Jeanne’s MotherGeek site.

Biology Explainer: The big 4 building blocks of life–carbohydrates, fats, proteins, and nucleic acids

The short version
  • The four basic categories of molecules for building life are carbohydrates, lipids, proteins, and nucleic acids.
  • Carbohydrates serve many purposes, from energy to structure to chemical communication, as monomers or polymers.
  • Lipids, which are hydrophobic, also have different purposes, including energy storage, structure, and signaling.
  • Proteins, made of amino acids in up to four structural levels, are involved in just about every process of life.                                                                                                      
  • The nucleic acids DNA and RNA consist of four nucleotide building blocks, and each has different purposes.
The longer version
Life is so diverse and unwieldy, it may surprise you to learn that we can break it down into four basic categories of molecules. Possibly even more implausible is the fact that two of these categories of large molecules themselves break down into a surprisingly small number of building blocks. The proteins that make up all of the living things on this planet and ensure their appropriate structure and smooth function consist of only 20 different kinds of building blocks. Nucleic acids, specifically DNA, are even more basic: only four different kinds of molecules provide the materials to build the countless different genetic codes that translate into all the different walking, swimming, crawling, oozing, and/or photosynthesizing organisms that populate the third rock from the Sun.

                                                  

Big Molecules with Small Building Blocks

The functional groups, assembled into building blocks on backbones of carbon atoms, can be bonded together to yield large molecules that we classify into four basic categories. These molecules, in many different permutations, are the basis for the diversity that we see among living things. They can consist of thousands of atoms, but only a handful of different kinds of atoms form them. It’s like building apartment buildings using a small selection of different materials: bricks, mortar, iron, glass, and wood. Arranged in different ways, these few materials can yield a huge variety of structures.

We encountered functional groups and the SPHONC in Chapter 3. These components form the four categories of molecules of life. These Big Four biological molecules are carbohydrates, lipids, proteins, and nucleic acids. They can have many roles, from giving an organism structure to being involved in one of the millions of processes of living. Let’s meet each category individually and discover the basic roles of each in the structure and function of life.
Carbohydrates

You have met carbohydrates before, whether you know it or not. We refer to them casually as “sugars,” molecules made of carbon, hydrogen, and oxygen. A sugar molecule has a carbon backbone, usually five or six carbons in the ones we’ll discuss here, but it can be as few as three. Sugar molecules can link together in pairs or in chains or branching “trees,” either for structure or energy storage.

When you look on a nutrition label, you’ll see reference to “sugars.” That term includes carbohydrates that provide energy, which we get from breaking the chemical bonds in a sugar called glucose. The “sugars” on a nutrition label also include those that give structure to a plant, which we call fiber. Both are important nutrients for people.

Sugars serve many purposes. They give crunch to the cell walls of a plant or the exoskeleton of a beetle and chemical energy to the marathon runner. When attached to other molecules, like proteins or fats, they aid in communication between cells. But before we get any further into their uses, let’s talk structure.

The sugars we encounter most in basic biology have their five or six carbons linked together in a ring. There’s no need to dive deep into organic chemistry, but there are a couple of essential things to know to interpret the standard representations of these molecules.

Check out the sugars depicted in the figure. The top-left molecule, glucose, has six carbons, which have been numbered. The sugar to its right is the same glucose, with all but one “C” removed. The other five carbons are still there but are inferred using the conventions of organic chemistry: Anywhere there is a corner, there’s a carbon unless otherwise indicated. It might be a good exercise for you to add in a “C” over each corner so that you gain a good understanding of this convention. You should end up adding in five carbon symbols; the sixth is already given because that is conventionally included when it occurs outside of the ring.

On the left is a glucose with all of its carbons indicated. They’re also numbered, which is important to understand now for information that comes later. On the right is the same molecule, glucose, without the carbons indicated (except for the sixth one). Wherever there is a corner, there is a carbon, unless otherwise indicated (as with the oxygen). On the bottom left is ribose, the sugar found in RNA. The sugar on the bottom right is deoxyribose. Note that at carbon 2 (*), the ribose and deoxyribose differ by a single oxygen.

The lower left sugar in the figure is a ribose. In this depiction, the carbons, except the one outside of the ring, have not been drawn in, and they are not numbered. This is the standard way sugars are presented in texts. Can you tell how many carbons there are in this sugar? Count the corners and don’t forget the one that’s already indicated!

If you said “five,” you are right. Ribose is a pentose (pent = five) and happens to be the sugar present in ribonucleic acid, or RNA. Think to yourself what the sugar might be in deoxyribonucleic acid, or DNA. If you thought, deoxyribose, you’d be right.

The fourth sugar given in the figure is a deoxyribose. In organic chemistry, it’s not enough to know that corners indicate carbons. Each carbon also has a specific number, which becomes important in discussions of nucleic acids. Luckily, we get to keep our carbon counting pretty simple in basic biology. To count carbons, you start with the carbon to the right of the non-carbon corner of the molecule. The deoxyribose or ribose always looks to me like a little cupcake with a cherry on top. The “cherry” is an oxygen. To the right of that oxygen, we start counting carbons, so that corner to the right of the “cherry” is the first carbon. Now, keep counting. Here’s a little test: What is hanging down from carbon 2 of the deoxyribose?

If you said a hydrogen (H), you are right! Now, compare the deoxyribose to the ribose. Do you see the difference in what hangs off of the carbon 2 of each sugar? You’ll see that the carbon 2 of ribose has an –OH, rather than an H. The reason the deoxyribose is called that is because the O on the second carbon of the ribose has been removed, leaving a “deoxyed” ribose. This tiny distinction between the sugars used in DNA and RNA is significant enough in biology that we use it to distinguish the two nucleic acids.

In fact, these subtle differences in sugars mean big differences for many biological molecules. Below, you’ll find a couple of ways that apparently small changes in a sugar molecule can mean big changes in what it does. These little changes make the difference between a delicious sugar cookie and the crunchy exoskeleton of a dung beetle.

Sugar and Fuel

A marathon runner keeps fuel on hand in the form of “carbs,” or sugars. These fuels provide the marathoner’s straining body with the energy it needs to keep the muscles pumping. When we take in sugar like this, it often comes in the form of glucose molecules attached together in a polymer called starch. We are especially equipped to start breaking off individual glucose molecules the minute we start chewing on a starch.

Double X Extra: A monomer is a building block (mono = one) and a polymer is a chain of monomers. With a few dozen monomers or building blocks, we get millions of different polymers. That may sound nutty until you think of the infinity of values that can be built using only the numbers 0 through 9 as building blocks or the intricate programming that is done using only a binary code of zeros and ones in different combinations.

Our bodies then can rapidly take the single molecules, or monomers, into cells and crack open the chemical bonds to transform the energy for use. The bonds of a sugar are packed with chemical energy that we capture to build a different kind of energy-containing molecule that our muscles access easily. Most species rely on this process of capturing energy from sugars and transforming it for specific purposes.

Polysaccharides: Fuel and Form

Plants use the Sun’s energy to make their own glucose, and starch is actually a plant’s way of storing up that sugar. Potatoes, for example, are quite good at packing away tons of glucose molecules and are known to dieticians as a “starchy” vegetable. The glucose molecules in starch are packed fairly closely together. A string of sugar molecules bonded together through dehydration synthesis, as they are in starch, is a polymer called a polysaccharide (poly = many; saccharide = sugar). When the monomers of the polysaccharide are released, as when our bodies break them up, the reaction that releases them is called hydrolysis.

Double X Extra: The specific reaction that hooks one monomer to another in a covalent bond is called dehydration synthesis because in making the bond–synthesizing the larger molecule–a molecule of water is removed (dehydration). The reverse is hydrolysis (hydro = water; lysis = breaking), which breaks the covalent bond by the addition of a molecule of water.

Although plants make their own glucose and animals acquire it by eating the plants, animals can also package away the glucose they eat for later use. Animals, including humans, store glucose in a polysaccharide called glycogen, which is more branched than starch. In us, we build this energy reserve primarily in the liver and access it when our glucose levels drop.

Whether starch or glycogen, the glucose molecules that are stored are bonded together so that all of the molecules are oriented the same way. If you view the sixth carbon of the glucose to be a “carbon flag,” you’ll see in the figure that all of the glucose molecules in starch are oriented with their carbon flags on the upper left.

The orientation of monomers of glucose in polysaccharides can make a big difference in the use of the polymer. The glucoses in the molecule on the top are all oriented “up” and form starch. The glucoses in the molecule on the bottom alternate orientation to form cellulose, which is quite different in its function from starch.

Storing up sugars for fuel and using them as fuel isn’t the end of the uses of sugar. In fact, sugars serve as structural molecules in a huge variety of organisms, including fungi, bacteria, plants, and insects.

The primary structural role of a sugar is as a component of the cell wall, giving the organism support against gravity. In plants, the familiar old glucose molecule serves as one building block of the plant cell wall, but with a catch: The molecules are oriented in an alternating up-down fashion. The resulting structural sugar is called cellulose.

That simple difference in orientation means the difference between a polysaccharide as fuel for us and a polysaccharide as structure. Insects take it step further with the polysaccharide that makes up their exoskeleton, or outer shell. Once again, the building block is glucose, arranged as it is in cellulose, in an alternating conformation. But in insects, each glucose has a little extra added on, a chemical group called an N-acetyl group. This addition of a single functional group alters the use of cellulose and turns it into a structural molecule that gives bugs that special crunchy sound when you accidentally…ahem…step on them.

These variations on the simple theme of a basic carbon-ring-as-building-block occur again and again in biological systems. In addition to serving roles in structure and as fuel, sugars also play a role in function. The attachment of subtly different sugar molecules to a protein or a lipid is one way cells communicate chemically with one another in refined, regulated interactions. It’s as though the cells talk with each other using a specialized, sugar-based vocabulary. Typically, cells display these sugary messages to the outside world, making them available to other cells that can recognize the molecular language.

Lipids: The Fatty Trifecta

Starch makes for good, accessible fuel, something that we immediately attack chemically and break up for quick energy. But fats are energy that we are supposed to bank away for a good long time and break out in times of deprivation. Like sugars, fats serve several purposes, including as a dense source of energy and as a universal structural component of cell membranes everywhere.

Fats: the Good, the Bad, the Neutral

Turn again to a nutrition label, and you’ll see a few references to fats, also known as lipids. (Fats are slightly less confusing that sugars in that they have only two names.) The label may break down fats into categories, including trans fats, saturated fats, unsaturated fats, and cholesterol. You may have learned that trans fats are “bad” and that there is good cholesterol and bad cholesterol, but what does it all mean?

Let’s start with what we mean when we say saturated fat. The question is, saturated with what? There is a specific kind of dietary fat call the triglyceride. As its name implies, it has a structural motif in which something is repeated three times. That something is a chain of carbons and hydrogens, hanging off in triplicate from a head made of glycerol, as the figure shows.  Those three carbon-hydrogen chains, or fatty acids, are the “tri” in a triglyceride. Chains like this can be many carbons long.

Double X Extra: We call a fatty acid a fatty acid because it’s got a carboxylic acid attached to a fatty tail. A triglyceride consists of three of these fatty acids attached to a molecule called glycerol. Our dietary fat primarily consists of these triglycerides.

Triglycerides come in several forms. You may recall that carbon can form several different kinds of bonds, including single bonds, as with hydrogen, and double bonds, as with itself. A chain of carbon and hydrogens can have every single available carbon bond taken by a hydrogen in single covalent bond. This scenario of hydrogen saturation yields a saturated fat. The fat is saturated to its fullest with every covalent bond taken by hydrogens single bonded to the carbons.

Saturated fats have predictable characteristics. They lie flat easily and stick to each other, meaning that at room temperature, they form a dense solid. You will realize this if you find a little bit of fat on you to pinch. Does it feel pretty solid? That’s because animal fat is saturated fat. The fat on a steak is also solid at room temperature, and in fact, it takes a pretty high heat to loosen it up enough to become liquid. Animals are not the only organisms that produce saturated fat–avocados and coconuts also are known for their saturated fat content.

The top graphic above depicts a triglyceride with the glycerol, acid, and three hydrocarbon tails. The tails of this saturated fat, with every possible hydrogen space occupied, lie comparatively flat on one another, and this kind of fat is solid at room temperature. The fat on the bottom, however, is unsaturated, with bends or kinks wherever two carbons have double bonded, booting a couple of hydrogens and making this fat unsaturated, or lacking some hydrogens. Because of the space between the bumps, this fat is probably not solid at room temperature, but liquid.

You can probably now guess what an unsaturated fat is–one that has one or more hydrogens missing. Instead of single bonding with hydrogens at every available space, two or more carbons in an unsaturated fat chain will form a double bond with carbon, leaving no space for a hydrogen. Because some carbons in the chain share two pairs of electrons, they physically draw closer to one another than they do in a single bond. This tighter bonding result in a “kink” in the fatty acid chain.

In a fat with these kinks, the three fatty acids don’t lie as densely packed with each other as they do in a saturated fat. The kinks leave spaces between them. Thus, unsaturated fats are less dense than saturated fats and often will be liquid at room temperature. A good example of a liquid unsaturated fat at room temperature is canola oil.

A few decades ago, food scientists discovered that unsaturated fats could be resaturated or hydrogenated to behave more like saturated fats and have a longer shelf life. The process of hydrogenation–adding in hydrogens–yields trans fat. This kind of processed fat is now frowned upon and is being removed from many foods because of its associations with adverse health effects. If you check a food label and it lists among the ingredients “partially hydrogenated” oils, that can mean that the food contains trans fat.

Double X Extra: A triglyceride can have up to three different fatty acids attached to it. Canola oil, for example, consists primarily of oleic acid, linoleic acid, and linolenic acid, all of which are unsaturated fatty acids with 18 carbons in their chains.

Why do we take in fat anyway? Fat is a necessary nutrient for everything from our nervous systems to our circulatory health. It also, under appropriate conditions, is an excellent way to store up densely packaged energy for the times when stores are running low. We really can’t live very well without it.

Phospholipids: An Abundant Fat

You may have heard that oil and water don’t mix, and indeed, it is something you can observe for yourself. Drop a pat of butter–pure saturated fat–into a bowl of water and watch it just sit there. Even if you try mixing it with a spoon, it will just sit there. Now, drop a spoon of salt into the water and stir it a bit. The salt seems to vanish. You’ve just illustrated the difference between a water-fearing (hydrophobic) and a water-loving (hydrophilic) substance.

Generally speaking, compounds that have an unequal sharing of electrons (like ions or anything with a covalent bond between oxygen and hydrogen or nitrogen and hydrogen) will be hydrophilic. The reason is that a charge or an unequal electron sharing gives the molecule polarity that allows it to interact with water through hydrogen bonds. A fat, however, consists largely of hydrogen and carbon in those long chains. Carbon and hydrogen have roughly equivalent electronegativities, and their electron-sharing relationship is relatively nonpolar. Fat, lacking in polarity, doesn’t interact with water. As the butter demonstrated, it just sits there.

There is one exception to that little maxim about fat and water, and that exception is the phospholipid. This lipid has a special structure that makes it just right for the job it does: forming the membranes of cells. A phospholipid consists of a polar phosphate head–P and O don’t share equally–and a couple of nonpolar hydrocarbon tails, as the figure shows. If you look at the figure, you’ll see that one of the two tails has a little kick in it, thanks to a double bond between the two carbons there.

Phospholipids form a double layer and are the major structural components of cell membranes. Their bend, or kick, in one of the hydrocarbon tails helps ensure fluidity of the cell membrane. The molecules are bipolar, with hydrophilic heads for interacting with the internal and external watery environments of the cell and hydrophobic tails that help cell membranes behave as general security guards.

The kick and the bipolar (hydrophobic and hydrophilic) nature of the phospholipid make it the perfect molecule for building a cell membrane. A cell needs a watery outside to survive. It also needs a watery inside to survive. Thus, it must face the inside and outside worlds with something that interacts well with water. But it also must protect itself against unwanted intruders, providing a barrier that keeps unwanted things out and keeps necessary molecules in.

Phospholipids achieve it all. They assemble into a double layer around a cell but orient to allow interaction with the watery external and internal environments. On the layer facing the inside of the cell, the phospholipids orient their polar, hydrophilic heads to the watery inner environment and their tails away from it. On the layer to the outside of the cell, they do the same.
As the figure shows, the result is a double layer of phospholipids with each layer facing a polar, hydrophilic head to the watery environments. The tails of each layer face one another. They form a hydrophobic, fatty moat around a cell that serves as a general gatekeeper, much in the way that your skin does for you. Charged particles cannot simply slip across this fatty moat because they can’t interact with it. And to keep the fat fluid, one tail of each phospholipid has that little kick, giving the cell membrane a fluid, liquidy flow and keeping it from being solid and unforgiving at temperatures in which cells thrive.

Steroids: Here to Pump You Up?

Our final molecule in the lipid fatty trifecta is cholesterol. As you may have heard, there are a few different kinds of cholesterol, some of which we consider to be “good” and some of which is “bad.” The good cholesterol, high-density lipoprotein, or HDL, in part helps us out because it removes the bad cholesterol, low-density lipoprotein or LDL, from our blood. The presence of LDL is associated with inflammation of the lining of the blood vessels, which can lead to a variety of health problems.

But cholesterol has some other reasons for existing. One of its roles is in the maintenance of cell membrane fluidity. Cholesterol is inserted throughout the lipid bilayer and serves as a block to the fatty tails that might otherwise stick together and become a bit too solid.

Cholesterol’s other starring role as a lipid is as the starting molecule for a class of hormones we called steroids or steroid hormones. With a few snips here and additions there, cholesterol can be changed into the steroid hormones progesterone, testosterone, or estrogen. These molecules look quite similar, but they play very different roles in organisms. Testosterone, for example, generally masculinizes vertebrates (animals with backbones), while progesterone and estrogen play a role in regulating the ovulatory cycle.

Double X Extra: A hormone is a blood-borne signaling molecule. It can be lipid based, like testosterone, or short protein, like insulin.

Proteins

As you progress through learning biology, one thing will become more and more clear: Most cells function primarily as protein factories. It may surprise you to learn that proteins, which we often talk about in terms of food intake, are the fundamental molecule of many of life’s processes. Enzymes, for example, form a single broad category of proteins, but there are millions of them, each one governing a small step in the molecular pathways that are required for living.

Levels of Structure

Amino acids are the building blocks of proteins. A few amino acids strung together is called a peptide, while many many peptides linked together form a polypeptide. When many amino acids strung together interact with each other to form a properly folded molecule, we call that molecule a protein.

For a string of amino acids to ultimately fold up into an active protein, they must first be assembled in the correct order. The code for their assembly lies in the DNA, but once that code has been read and the amino acid chain built, we call that simple, unfolded chain the primary structure of the protein.

This chain can consist of hundreds of amino acids that interact all along the sequence. Some amino acids are hydrophobic and some are hydrophilic. In this context, like interacts best with like, so the hydrophobic amino acids will interact with one another, and the hydrophilic amino acids will interact together. As these contacts occur along the string of molecules, different conformations will arise in different parts of the chain. We call these different conformations along the amino acid chain the protein’s secondary structure.

Once those interactions have occurred, the protein can fold into its final, or tertiary structure and be ready to serve as an active participant in cellular processes. To achieve the tertiary structure, the amino acid chain’s secondary interactions must usually be ongoing, and the pH, temperature, and salt balance must be just right to facilitate the folding. This tertiary folding takes place through interactions of the secondary structures along the different parts of the amino acid chain.

The final product is a properly folded protein. If we could see it with the naked eye, it might look a lot like a wadded up string of pearls, but that “wadded up” look is misleading. Protein folding is a carefully regulated process that is determined at its core by the amino acids in the chain: their hydrophobicity and hydrophilicity and how they interact together.

In many instances, however, a complete protein consists of more than one amino acid chain, and the complete protein has two or more interacting strings of amino acids. A good example is hemoglobin in red blood cells. Its job is to grab oxygen and deliver it to the body’s tissues. A complete hemoglobin protein consists of four separate amino acid chains all properly folded into their tertiary structures and interacting as a single unit. In cases like this involving two or more interacting amino acid chains, we say that the final protein has a quaternary structure. Some proteins can consist of as many as a dozen interacting chains, behaving as a single protein unit.

A Plethora of Purposes

What does a protein do? Let us count the ways. Really, that’s almost impossible because proteins do just about everything. Some of them tag things. Some of them destroy things. Some of them protect. Some mark cells as “self.” Some serve as structural materials, while others are highways or motors. They aid in communication, they operate as signaling molecules, they transfer molecules and cut them up, they interact with each other in complex, interrelated pathways to build things up and break things down. They regulate genes and package DNA, and they regulate and package each other.

As described above, proteins are the final folded arrangement of a string of amino acids. One way we obtain these building blocks for the millions of proteins our bodies make is through our diet. You may hear about foods that are high in protein or people eating high-protein diets to build muscle. When we take in those proteins, we can break them apart and use the amino acids that make them up to build proteins of our own.

Nucleic Acids

How does a cell know which proteins to make? It has a code for building them, one that is especially guarded in a cellular vault in our cells called the nucleus. This code is deoxyribonucleic acid, or DNA. The cell makes a copy of this code and send it out to specialized structures that read it and build proteins based on what they read. As with any code, a typo–a mutation–can result in a message that doesn’t make as much sense. When the code gets changed, sometimes, the protein that the cell builds using that code will be changed, too.

Biohazard!The names associated with nucleic acids can be confusing because they all start with nucle-. It may seem obvious or easy now, but a brain freeze on a test could mix you up. You need to fix in your mind that the shorter term (10 letters, four syllables), nucleotide, refers to the smaller molecule, the three-part building block. The longer term (12 characters, including the space, and five syllables), nucleic acid, which is inherent in the names DNA and RNA, designates the big, long molecule.

DNA vs. RNA: A Matter of Structure

DNA and its nucleic acid cousin, ribonucleic acid, or RNA, are both made of the same kinds of building blocks. These building blocks are called nucleotides. Each nucleotide consists of three parts: a sugar (ribose for RNA and deoxyribose for DNA), a phosphate, and a nitrogenous base. In DNA, every nucleotide has identical sugars and phosphates, and in RNA, the sugar and phosphate are also the same for every nucleotide.

So what’s different? The nitrogenous bases. DNA has a set of four to use as its coding alphabet. These are the purines, adenine and guanine, and the pyrimidines, thymine and cytosine. The nucleotides are abbreviated by their initial letters as A, G, T, and C. From variations in the arrangement and number of these four molecules, all of the diversity of life arises. Just four different types of the nucleotide building blocks, and we have you, bacteria, wombats, and blue whales.

RNA is also basic at its core, consisting of only four different nucleotides. In fact, it uses three of the same nitrogenous bases as DNA–A, G, and C–but it substitutes a base called uracil (U) where DNA uses thymine. Uracil is a pyrimidine.

DNA vs. RNA: Function Wars

An interesting thing about the nitrogenous bases of the nucleotides is that they pair with each other, using hydrogen bonds, in a predictable way. An adenine will almost always bond with a thymine in DNA or a uracil in RNA, and cytosine and guanine will almost always bond with each other. This pairing capacity allows the cell to use a sequence of DNA and build either a new DNA sequence, using the old one as a template, or build an RNA sequence to make a copy of the DNA.

These two different uses of A-T/U and C-G base pairing serve two different purposes. DNA is copied into DNA usually when a cell is preparing to divide and needs two complete sets of DNA for the new cells. DNA is copied into RNA when the cell needs to send the code out of the vault so proteins can be built. The DNA stays safely where it belongs.

RNA is really a nucleic acid jack-of-all-trades. It not only serves as the copy of the DNA but also is the main component of the two types of cellular workers that read that copy and build proteins from it. At one point in this process, the three types of RNA come together in protein assembly to make sure the job is done right.


 By Emily Willingham, DXS managing editor 
This material originally appeared in similar form in Emily Willingham’s Complete Idiot’s Guide to College Biology

Pregnancy 101: My placenta looked like meatloaf, but I wasn’t about to eat it.

By Jeanne Garbarino, Biology Editor
An historic view interpretation of the placenta (source). 

She gave me a few minutes to meet my daughter before she reeled me back into a state that was my new reality.  “You’re not finished Jeanne.  You still need to birth your placenta.”  What?!?! More pushing? But I was lucky and the efforts required to bring my placenta ex vivo were minimal. 

This is the second placenta my body helped make.  OK,
so it doesn’t EXACTLY look like meatloaf…  

The idea of a placenta, which is the only human organ to completely and temporarily develop after birth, was fascinating.  That thing sitting in a rectangular periwinkle bucket was what allowed me to grow another human.. inside of my body!  There was no way I was not going to check it out, as well as create a permanent record of its relatively short-lived existence. 

My first impression was that it looked like “meatloaf.”  Not necessarily a well made meatloaf, but perhaps one that is made by my mother (sorry mom).  But, alas, chaos reigned and I wasn’t able to really take a good look.  However, for my second birth and hence second placenta, my midwife indulged me with a more detailed look and a mini-lesson.   

Baby’s eye view:
Where geekling deux spent 39 weeks and 4 days. 

Her gloved hands, still wet with my blood and amniotic fluid, slid into the opening that was artificially created with a tool resembling a crocheting needle.  She opened the amniotic sac wide so I could get a baby’s eye view of the crimson organ that served as a nutritional trading post between me and my new bundle of joy. 

She explained that the word “placenta” comes from from the Greek word plakoeis, which translates to “flat cake” (however, I’m sure if my mom’s meatloaf was more common in ancient Greece, the placenta would be named differently).   “It’s one of the defining features of being a mammal,” she explained as I was working on another mammalian trait – getting my baby to nurse for the first time.

That was about all I could mentally digest at the time, but still, more than three years later, the placenta continues to fascinate me, mostly due to the fact that it is responsible for growing new life.  It’s a natural topic for this long overdue Pregnancy101post, so let’s dive in!
Development of the placenta
It all starts when a fertilized egg implants itself into the wall of the uterus.  But, in order to fully understand how it works, we should start with an overview of the newly formed embryo. 

The very early stages of us (and many other things that are alive).
The trophoblast invades the uterus,
leading to implantation of the blastocyst.

As soon as a male sperm cell fuses with a female egg cell, fertilization occurs and the cells begin to multiply.  But, they remain contained within a tiny sphere.  As the cells continue to divide, they are given precise instructions depending on their location within that sphere, and begin to transform into specific cell types.  This process, which is called cellular differentiation, actually seals the fate every cell in our body, sort of like how we all have different jobs – some of us are transport things, some of us are involved in policing the neighborhoods, some of us build structures, some of us communicate information, some of us deal with food, some of us get rid of waste, etc.  Every cell gets a job (it’s the only example of 100% employment rates!).

Now back to the cells in the fertilized egg.  As they start to learn what their specific job will be, the cells within the sphere will start to organize themselves.  After about 5 days after fertilization, the sphere of cells becomes something called a blastocyst, which readies itself for implantationinto the wall of the uterus. 

The act of implantation is largely due to the cells found on the perimeter of the blastocyst sphere.  These cells, collectively known as the trophoblast, release a very important hormone – human chorionic gonadotropin (hCG) – that tells the uterus to prepare for it’s new tenant.  (If you recall, hCG is the hormone picked up by pregnancy tests.)  Around day 7, the trophoblast cells start to invade the lining of the uterus, and begin to form the placenta.  It is at this point that pregnancy officially begins.  (Here is a cool video, created by the UNSW Embryology Department, showing the process of implantation.)

Structure of the placenta

Eventually the trophoblast becomes the recognizable organ that is the placenta.  Consider the “flat cake” analogy, with the top of the cake being the fetal side (the side that is in contact with the baby), and the bottom of the cake being the maternal side (the side that is in contact with the mother).     

Cross section of the placenta: Blood vessels originating from the fetus sit in a pool
of maternal blood, which is constantly replenished my maternal arteries and veins.
The red represents oxygenated blood, and the blue represents de-oxygenated blood.

Projecting from the center of the fetal side of the placenta are two arteries and one vein, coiled together in a long, rubbery rope, often bluish-grey in color.   This umbilical cord serves as the tunnel through which nutrients and waste are shuttled, and essentially serves to plug the baby into the mother’s metabolic processes.  At the umbilical cord-placenta nexus, the umbilical cord arteries and vein branch out into a network of blood vessels, which further divide into a tree-like mass of vessels within the placenta. 

These tree-like masses originating from the umbilical cord (and thus fetus) sit in a cavity called the intervillous space, and are bathed in nutrient-rich maternal blood.  This maternal blood, which provides the fetus with a means for both nutrient delivery and waste elimination, is continually replenished via a network of maternal arteries and veins that feed into the intervillous space.  Furthermore, these arteries and veins help to anchor the placenta into the uterine wall.  One of the most interesting aspects about the mother-feus relationship is that the blood vessel connection is indirect.  This helps to prevent a detrimental immune response, which could lead to immunological rejection of the fetus (sort of like how a transplanted organ can become rejected by the recipient).  
Functions of the placenta

Just like a plant needs sunlight, oxygen, and water to grow, a baby needs all sorts of nutrients to develop.  And since a baby also produces waste, by nature of it being alive and all, there is an absolute requirement for waste removal.  However, because we can’t just give a developing fetus food or a bottle, nor are we able to change diapers in utero, the onus lies completely on the biological mother. 

This is where the placenta comes in. Because the fetus is plugged into the circulatory system of the mother via the umbilical cord and placenta, the fetus is provided with necessary nutrients and a mechanism to get rid of all the byproducts of metabolism.  Essentially, the placenta acts as a waitress of sorts – providing the food, and cleaning it all up when the fetus is done eating. 

But it’s not just about nutrition and waste.  The placenta also serves as a hormone factory, making and secreting biological chemicals to help sustain the pregnancy.  I mentioned above that the placenta produces hCG, which pretty much serves as a master regulator for pregnancy in that it helps control the production of maternally produced hormones, estrogen and progesterone.  It also helps to suppress the mother’s immunological response to the placenta (along with other factors), which cloaks the growing baby, thereby hiding it from being viewed as a “foreign” invader (like a virus or bacteria). 

Another hormone produced by the placenta is human placental lactogen (hPL), which tells the mother to increase her mammary tissue.  This helps mom prepare for nursing her baby once it’s born, and is the primary reason why our boobs tend to get bigger when we are pregnant.  (Yay for big boobies, but my question is, what the hell transforms our rear ends into giant double cheeseburgers, and what biological purpose does that serve??  But I digress…)

Despite the fact that the mother’s circulatory system remains separate from the baby’s circulatory system, there are a clear mixing of metabolic products (nutrients, waste, hormones, etc).  In essence, if it is in mom’s blood stream, it will very likely pass into baby’s blood stream.  This is the very reason that pregnant mothers are strongly advised to stay away from cigarettes, drugs, alcohol, and other toxic chemicals, all of which can easily pass through the placental barrier lying between mother and fetus.  When moms do not heed this warning, the consequences can be devastating to the developing fetus, potentially leading to birth defects or even miscarriage.        

There are also situations that could compromise the functions of the placenta – restriction of blood supply, loss of placental tissue, muted placental growth, just to name a few – reducing the chances of getting and/or staying pregnant.  This placental insufficiency is generally accompanied by slow growth of the uterus, low rate of weight gain, and most importantly, reduced fetal growth.     

And it’s not just the growth of the placenta that is important – where the placenta attaches to the uterus is also very important.  When the placenta grows on top of the opening of the birth canal, the chances for a normal, vaginal birth are obliterated.  This condition, known as placenta previa, is actually quite dangerous and can cuase severe bleeding in the third trimester.  0.5% of all women experience this, and it is one of the true medical conditions that absolutely requires a C-section. 

Then, there is the issue of attachment.  If the placenta doesn’t attach well to the uterus, it could end up peeling away from the uterine wall, which can cause vaginal bleeding, as well as deprive the baby from nutrient delivery and waste disposal.  This abruption of the placenta  is complicated by the use of drugs, smoking, blood clotting disorders, high blood pressure, or if the mother has diabetes or a history of placental abruption. 

Conversely, there are times when the blood vessels originating from the placenta implant too deeply into the uterus, which can lead to a placenta accreta.  If this occurs, the mother generally delivers via C-section, followed by a complete hysterectomy. 

Cultural norms and the placenta

There are many instances where the placenta plays a huge role in the culture of a society.  For instance, both the Maori people of New Zealand and the Navajopeople of Southwestern US will bury the placenta.  There is also some folklore associated with the placenta, and several societies believe that it is alive, pehaps serving as a friend for the baby.   But the tradition that seems to be making it’s way into the granola culture of the US is one that can be traced back to traditional Chinese practices: eating the placenta. 

Placentophagy, or eating one’s own placenta, is very common among a variety of mammalian species.  Biologically speaking, it is thought that animals that eat their own placenta do so to hide fresh births from predators, thereby increasing the chances of their babies’ survival.  Others have suggested that eating the nutrient-rich placenta helps mothers to recover after giving birth.

However, these days, a growing number of new mothers are opting to ingest that which left their own body (likely) through their own vaginas.  And they are doing so though a very expensive process involving dehydrating and encapsulating placental tissue.  

Why would one go through this process?  The claims are that placentophagy will help ward of post partum depression, increase the supply of milk in a lactating mother, and even slow down the ageing process.  But, alas, these are some pretty bold claims that are substantiated only by anecdata, and not actual science (see this).

So, even though my placentas looked like meatloaf, there was no way I was eating them.  If you are considering this, I’d approach the issue with great skepticism.  There are many a people who will take advantage of maternal vulnerabilities in the name of cold hard cash.  And, always remember, if the claims sound to good to be true, they probably are!   


Thanks for tuning into this issue of Pregnancy101, and enjoy this hat, and a video!

Source


Double Xpression: Meghan Groome

Meghan Groome, PhD, Director of K12 Education and Science & the City, New York Academy of Sciences
[Ed. note: Double X Science has started a new series: Double Xpression: Profiles of Women into Science. The focus of these profiles is how women in science express themselves in ways that aren’t necessarily scientific, how their ways of expression inform their scientific activities and vice-versa, and the reactions they encounter.]
Today’s profile is an interview with Meghan Groome, PhD, New York Academy of SciencesDirector of K12 Education and Science & The City, who answered our questions via email with DXS Biology Editor Jeanne Garbarino.

DXS: First, can you give me a quick overview of what your scientific background is and your current connection to science?

MG: I was a bio major since age two. Growing up (and still today) I had a deep love of all things gross, icky, creepy, and crawly and a deep dislike of anything math related. My parents didn’t really know what to do with me, so a theme to my scientific background is that although I was a straight-A student in my bio classes, no one had any idea that I should be doing enrichment programs or making an effort to learn math. I figured that by being a great bio major, I would become a great scientist. So I was an excellent consumer of scientific knowledge but only realized late in life that I needed to be a producer to actually become a scientist.

Being a straight-A student doesn’t actually get you a job when you graduate from a small liberal arts college with a degree in biology and theater, and out of desperation, I took a job teaching. While I wasn’t a good scientist, I turned out to be an excellent teacher and loved the creativity, energy, and never-ending questions that go along with being a science teacher. If you teach from the perspective that science is an endless quest for knowledge, you’ll never get bored taking kids on that journey.

While my background is in biology, my graduate degree is in science education, and I study gender dynamics and student questioning the middle-school classrooms. I currently work for the New York Academy of Sciences as the Director of K12 Education and public programs and spend most of my day convincing scientists that education outreach is not only part of their jobs but a lot of fun.

DXS: What ways do you express yourself creatively that may not have a single thing to do with science?

MG: I’m also a photographer and spend a lot of time wandering around neighborhoods in Brooklyn with a special love of decaying buildings and empty lots. I love how nature conquers things that we humans consider to be permanent – like how we have to constantly beat back the invading hordes of plants and animals even in one of the most man-made environments in the world.

I was also a theater major, so (I) have a strong background in costume design and stage directing. I hate acting but love dance. If I had any talent I would have become a musical theater star but unfortunately enthusiasm and determination can only get you so far.

DXS: Do you find that your scientific background informs your creativity, even though what you do may not specifically be scientific?

MG: I find great joy in seeing how nature conquers human engineering. When I learned about Lynn Margulis’ Gaia hypothesis, I began seeing it everywhere and I think I love photography because I’m documenting the Earth fighting back.

Most of my creative energy comes from working with kids and listening to the wonderful way in which they think about the natural world. Adults can be so rigid in their thinking and are often afraid to say ideas that are out of the mainstream thinking. The older a kid gets, the more we expect them to conform to the adult way of thinking. Middle-school kids are old enough to express their wacky ideas, and young enough to not recognize that their ideas are considered “wrong.”

DXS: Have you encountered situations in which your expression of yourself outside the bounds of science has led to people viewing you differently–either more positively or more negatively?

MG: People tell me all the time “You’re not what we expected” and I’m not really sure how to respond.

In the science education world, my research is informed by my experiences teaching in a very poor district and from a social justice perspective. It’s a rather controversial theoretical framework because it says, “I have an agenda to use my research to bring about equity in an unequal world.” From a research perspective, it means you need to be explicit in your point of view and your biases and have much greater validity and reliability to show that your research is solid. My work is very passion driven so I’ve had to learn when it’s appropriate to pull out my soap box and go full-out social justice to them.

This is changing, but for a long time I kept my personality under wraps in a professional setting. It’s only now — with 10 years professional experience, great organizations on my resume, and a PhD — that I can be clever, confront those I disagree with, and even smile. Anyone who’s ever had a beer with me knows that I’m a goofball and will do just about anything to make someone laugh. I’m a science person, a theater person, a teacher, researcher, policy maker, consultant, and have seen a lot of exquisitely bad and good stuff in my life and so I am frequently the voice of an outsider even though I look and sound like a total insider. That can really freak people out especially if they’ve only read my bio or seen me in my most professional mode.
DXS: Have you found that your non-science expression of creativity/activity/etc. has in any way informed your understanding of science or how you may talk about it or present it to others?

MG: I approach teaching science from a fairly theatrical perspective. In my class we dance, sing, laugh, talk about the real world. I’ve never used the textbook, and I’m very insistent that everything be in the first person when writing or speaking about science. I much prefer teaching regular classes — not honors or AP — and can’t stand kids who remind me of myself in high school.

I approach scientists in the same way and try to make them comfortable admitting that their more than a brain on a stick. I’ve found one of the biggest fears of young scientists is that their PI will find out that they’re interested in something more than life in the lab so I always try to work within the existing power structure and make sure the PIs and Deans indicate to them that working with the (New York) Academy (of Sciences) is okay.

DXS: How comfortable are you expressing your femininity and in what ways? How does this expression influence people’s perception of you in, say, a scientifically oriented context?

MG: This question confounds the heck out of me. I am still such a tomboy and have always chosen to present myself as a somewhat genderless individual. I’ve always considered myself “smart not pretty” because I can control how smart I am but not how pretty. A few years ago, my sisters pulled me aside and told me I needed to stop dressing like such a slob. They started buying me pretty, fashionable clothes and insisting that I wear skirts above the knee and get a real hair cut.

Since I started working at the Academy, I have a very public facing role and have grown to accept that I should look nice. This goes along with slowly feeling comfortable letting my personality out in professional settings but I still consider myself a tomboy and consider my outward appearance to be a costume designed to do a job.

So I guess the answer is, femininity, what femininity?

DXS: Do you think that the combination of your non-science creativity and scientific-related activity shifts people’s perspectives or ideas about what a scientist or science communicator is? If you’re aware of such an influence, in what way, if any, do you use it to (for example) reach a different corner of your audience or present science in a different sort of way?

MG: I think very few people are brains on a stick but that being a scientist often requires us to pretend we have no life outside the lab. I’ve now worked with hundreds of young scientists who spend time working with kids and I’m so pleased to see how quickly they shift from lab geek to real person when talking with a 4th grader. I want scientists to be evangelicals for science, and I want that to include the fact that scientists are real, fallible, wacky, wonderful people too.

DXS: If you had something you could say to the younger you about the role of expression and creativity in your chosen career path, what would you say?

MG: I was always encouraged to be an individual and be myself. I credit my parents with allowing me to pursue my passion and not try to box me in to one identity. It’s never been easy to forge my own path, and I dedicate a lot of myself to my work.

My advice to my younger self would be to slow down a bit, know that you don’t have to get 100% on everything, and know that the problems of the world don’t have to be solved right now.

And perhaps to learn how to be a bit more like a girl. It’s incredibly powerful to see yourself as smart and pretty.


———————————————————————
Meghan Groome is the Director of K12 Education and Science & the City at the New York Academy of Sciences, an organization with the mission to advance scientific research and knowledge, support scientific literacy, and promote the resolution of society’s global challenges through science-based solutions. After graduating from Colorado College in Biology and Theatre, she desperately needed a job and took one as a substitute teacher at a middle school in Ridgewood, NJ. She discovered that she had a knack for making science interesting and enjoyable, mostly through bringing in gross things, lighting things on fire (but always in a safe manner), and having a large library of the world’s best science writing and science fiction. After teaching in both Ridgewood and Paterson, NJ, she completed her PhD at Teachers College (TC) Columbia University with a focus on student question-asking in the classroom. While at TC, she was a founding member of an international education consulting firm and worked on projects from Kenya to Jordan with a focus on designing new schools and school systems in the developing world. 

After graduating, Dr. Groome became a Senior Policy Analyst at the National Governors Association on Governor Janet Napolitano’s Innovation America Initiative. Prior to her work at the Academy, Dr. Groome worked at the American Museum of Natural History and authored the policy roadmap for the Empire State STEM Education Network and taught urban biodiversity in the Education Department. At the Academy, she is responsible for the Afterschool STEM Mentoring program, which places graduate students and postdocs in the City’s afterschool programs, and the Science Teacher program, where she designs field trips and content talks to the City’s STEM teachers. Connect with her on Twitter, and read her NYAS blog!

Good Deeds, Good Science: Dr. Ben and The BioBus


The Cell Motion BioBus, ready to be boarded by all interested parties.  And I do mean parties ;-)

About two years ago, I received one of those university-wide mass emails aimed to solicit scientist volunteers to help teach science at an underprivileged school in Manhattan. Given my interest in science education and communication, I read on. The request was on behalf of something called the Cell Motion BioBus, which is a 1974 San Francisco transit bus that has been converted into a high-tech mobile microscopy lab, and for that particular day, the duties of the scientist volunteer involved teaching 3rd graders about the tiny crustacean, Daphnia.  


A few weeks later, I found myself inside The BioBus, hanging out and talking science with a bunch of very excited 8-year-olds. We spoke about the habitat where Daphnia lives, the food it eats, and how it reproduces. We examined Daphnia anatomy using diagrams on the computer, being sure to locate the heart. After this lesson, the kids went on to mount real Daphnia samples onto microscope slides so that they can look at these tiny “water fleas” at high magnification. The kids did not hold back with their enthusiasm, laughing and giggling while pointing out Daphnia legs, antennae, and the beating heart. It was such a wonderful experience that I wrote about it.  


Watching their faces light up with wonder and amazement over something so simple was incredibly gratifying for me, and I immediately came to understand why Dr. Ben, a Columbia University-bred PhD physicist, turned down several coveted offers to become an academic lab head. He, along with Sarah Weisberg, is currently fulfilling the dream of bringing science education to often-overlooked communities. However, as with many a good initiative, funding is limited.  

To help keep The BioBus afloat, we at Double X Science are profiling this organization in our new series Good Deeds, Good Science. The timing couldn’t be more perfect because The BioBus is currently looking for help to get home after spreading some sciencey goodness to schools in Illinois, Kansas, Colorado, New Mexico, and Texas.  Here is a letter from Sarah:   

Dear Science Fan: 

I am writing to tell you about a great non-profit organization I’ve been volunteering with, called the Cell Motion BioBus. The BioBus brings practicing scientists (graduate level and above) to teach K-12 students aboard their mobile lab — a converted 1974 transit bus that now houses a research-level microscope lab. I myself have seen how students of all ages and backgrounds respond to the BioBus, and it’s usually along the lines of, “That was AWESOME!”  

The BioBus is also an amazing story of grassroots fundraising and charitable giving: the lab was built using donated equipment and labor and right now, the BioBus is at the end of a cross-country tour, during which it was able to bring research-level science to schools in places like rural Kansas, funded by small donations from its supporters.  

Now, the BioBus needs help finishing its fundraising campaign so it can return to NYC and continue teaching in 2012. Please help by visiting www.fundly.com/biobus and giving what you can — this is grassroots work, and any amount helps! 

Thanks so much, and Happy New Year!

Below is are a few videos of The BioBus trip thus far, which you can find on The BioBus YouTube Channel. If you are willing and able, please donate to this cause. Putting a science-induced smile on a kids face will be well worth it!







Jeanne Garbarino, Double X Science biology editor


  

Mariette DiChristina

Mariette DiChristina is editor in chief of Scientific American.

[Ed. note: This interview is the second installment in our new series, Double Xpression: Profiles of Women into Science. The focus of these profiles is how women in science express themselves in ways that aren’t necessarily scientific, how their ways of expression inform their scientific activities and vice-versa, and the reactions they encounter.]

Today’s profile is an interview with Mariette DiChristina, editor in chief, Scientific American, who answered our questions via email with DXS Biology Editor Jeanne Garbarino. Read on to find out what a Marx Brothers movie has to do with communicating science.

                         

DXS: First, can you give me a quick overview of what your scientific background is and your current connection to science?

MD: Like most kids, I was born a scientist. What I mean is, I wanted to know how everything worked, and I wanted to learn about it firsthand. At a tag sale, for instance, I remember buying a second-hand biology book called The Body along with my second-hand Barbie for 50 cents. “Are you sure your mom is going to be OK with you buying that?” asked the concerned neighbor, eyeing the biology book.

I memorized the names and orbital periods of the planets and of dinosaurs like some kids spout baseball stats (which I could also do as a kid, by the way). We didn’t have a lot of money, so I caught my own pet fish from a nearby pond by using my little finger as a pretend worm. I scooped up my fish with an old plastic container and put it on my nightstand. If it died, I buried it and dug it up later so I could look at the bones. My proudest birthday gifts were when I got a chemistry set and a microscope with 750x. A girlfriend and I got the idea to pick up a gerbil that had a bad habit of biting fingers, just so we could get blood to squeeze on a glass slide. (She was braver than I was about being the one to get bitten.)

In middle school, I was a proud member of the Alchemists—an after-school science club—so I could do extra labs and clean the beakers and put away Bunsen burners for fun. I knew I would be a scientist when I grew up.

But somewhere during my high school courses, I came to believe that being a scientist meant I’d have to pick one narrow discipline and stick to it. I felt that I liked everything too much to do that, however. As an undergraduate, I eventually figured out that what I really wanted was to be a student of many different things for life, and then share those things I learned with others. That led me to a journalism degree. It also means that, as far as knowledge about science goes, I fit the cliché of being “an inch deep and a mile wide.”

DXS: What ways do you express yourself creatively that may not have a single thing to do with science?

MD: This one is a tough one for me to answer because I am always trying to convince people that pretty much everything they care about in the headlines actually has to do with science! In my case, I’ve also always been interested in drawing and in visuals in general. I was a pretty serious art student in high school as well, although I later decided that I didn’t have enough passion for it to make that my career choice. My interest in art partly led me to work at magazines like Scientific American and Popular Science, where the ability to storyboard an informational graphic and otherwise think visually is very helpful.

When I’m home, I really enjoy making things with my two daughters, such as helping them with crafts or scrapbooks, although I definitely spend a lot more time on planning dinners and cooking for (and with) the family than anything else. I like the puzzle solving of setting up the meals for the week during the weekend, so it’s easier for my husband to get things ready weeknights. We’re big on eating dinner together as a family every night. I like gardening and mapping out planting beds. I’m better at planting than at keeping up with tending, however, because of my intense work schedule and travel. In short, if I have free time at all, I’m enjoying it with my family. And if we’re doing some creative expression while we’re at it, great!

DXS: Do you find that your connection to science informs your creativity, even though what you do may not specifically be scientific?

MD: My connection to science informs most things that I do in one way or another. When I’m making dinner, I sometimes find myself talking about the chemistry of cooking with the girls. Especially when our daughters were smaller, if one of them had a question, I’d try to come up with ways to make finding the answer together into a kind of science adventure or project.

I suppose that since I spend most of my waking hours thinking about how best to present science to the public, it’s just a mental routine, or a lens through which I tend to view the world.

DXS: Have you encountered situations in which your expression of yourself outside the bounds of science has led to people viewing you differently–either more positively or more negatively?

MD: It’s more the other way around. I get amusing reactions from people once they find out what I do. How could I seem so normal and yet work in a field that relates to…shudder…science? An attorney friend has sometimes kidded me, saying there’s no way he can understand what’s in Scientific American, so I must be incredibly smart. I don’t feel that way at all! Anybody who has a high school degree and an interest in the topic can understand a feature article in Scientific American. Science is for everyone. And science isn’t only for people who work in labs. It’s just a rational way of looking at life. I also believe science is the engine of human prosperity. And if I sound a little evangelistic about that, well, I am.
DXS: Have you found that your non-science expression of creativity/activity/etc. has in any way informed your understanding of science or how you may talk about it or present it to others?

MD: I think it’s helpful to look to non-science areas for ideas about ways to help make science appealing, especially for people who might be intimidated by the subject. My main job is to try to make a connection for people to the science we cover in Scientific American. I once had a boss at Popular Sciencewho made all us editors take an intensive, three-day screenwriting course that culminated in the showing and exposition, scene by scene, of the structure and writing techniques of Casablanca. When I came back, he gave me a big grin and said, “So, what did you think?” I got his point about bringing narrative techniques into feature articles. Like most people, I enjoy movies and plays; now I also look at them for storytelling tips. And there are lots of creative ways to tell science stories beyond words: pictures, slide shows, videos, songs. Digital media are so flexible.

DXS: How comfortable are you expressing your femininity and in what ways? How does this expression influence people’s perception of you in, say, a scientifically oriented context?

MD: I was the oldest of three daughters raised by a single dad (my mom died when I was 12) and I was always a tomboy, playing softball through college and so on. So I can’t say I’ve ever been terribly feminine, at least in the stereotypical ways. At the same time, I’m obviously a wife and a mother who, like most parents, tries not to talk about my kids so often that it’s irritating to friends and coworkers. I once was scolded in a letter from an irritated reader after I had mentioned my kids in a “From the Editor” column about education. He wrote that if I was so interested in science education and kids, I should go back home and “bake cookies.” I laughed pretty hard at that.

DXS: Do you think that the combination of your non-science creativity and scientific-related activity shifts people’s perspectives or ideas about what a scientist or science communicator is? If you’re aware of such an influence, in what way, if any, do you use it to (for example) reach a different corner of your audience or present science in a different sort of way?

MD: I’m sure that’s true. I think personality and approach also might shift perspectives. A girlfriend of mine once called me “the friendly face of science.” I guess I smile a lot, and I like to meet people and try to get to know them. That ability—being able to make a personal connection to different people—is important for every good editor. My job, essentially, is to understand your interests well enough to make sure Scientific American is something that you’ll enjoy each day, week, month.

Increasingly, also, the audiences are different in different media, so we need to understand how to flex the approach a bit to appeal to those different audiences. In print, for instance, according to the most recent data we have from MRI, the median age of Scientific American readers is 47, with 70 percent men and 30 percent women. The picture is quite different online, where, according to Nielsen, our median age is 40 and the male/female ratio is closer to half and half, with 56.5 percent men to 43.5 percent women. You need to bring a lot of creative thinking to the task of how to make one brand serve rather different sets of people.

Fortunately, I have terrific, creative staff! And another part of the way you do that, I think, is to invite your readers in to collaborate; we’ve done a bit of that in the past year on http://www.scientificamerican.com/, and I’m looking forward to experimenting further in the coming months. Ultimately, I’d like to turn Scientific American from a magazine with an amazing 166-year tradition of being a conduit of authoritative information about science and technology into a platform where curious minds can gather and share.

DXS: If you had something you could say to the younger you about the role of expression and creativity in your chosen career path, what would you say? 

MD: I was pretty determined to do something—whatever it was—that would let me satisfy my curiosity and passion about science. I would tell younger me, who, by the way, never intended to go into magazine management: It’s just as fun, rewarding and creative to be a science writer as you suspect it might be. I’d also tell the younger me something that didn’t occur to me early enough to pull it off—that a double major in journalism and science might be a good idea. And, I would add, it’s also a good idea to take some business classes, so you’ll be better armed for dealing with the working world.


Also on Double X Science

More about Mariette DiChristina

Mariette DiChristina oversees Scientific American Continue reading

Hormonal birth control explainer: a matter of health

Politics often interferes where it has no natural business, and one of those places is the discussion among a teenager, her parents, and her doctor or between a woman and her doctor about the best choices for health. The hottest button politics is pushing right now takes the form of a tiny hormone-containing pill known popularly as the birth control pill or, simply, The Pill. This hormonal medication, when taken correctly (same time every day, every day), does indeed prevent pregnancy. But like just about any other medication, this one has multiple uses, the majority of them unrelated to pregnancy prevention.

But let’s start with pregnancy prevention first and get it out of the way. When I used to ask my students how these hormone pills work, they almost invariably answered, “By making your body think it is pregnant.” That’s not correct. We take advantage of our understanding of how our bodies regulate hormones not to mimic pregnancy, exactly, but instead to flatten out what we usually talk about as a hormone cycle. 

The Menstrual Cycle

In a hormonally cycling girl or woman, the brain talks to the ovaries and the ovaries send messages to the uterus and back to the brain. All this chat takes place via chemicals called hormones. In human females, the ovarian hormones are progesterone and estradiol, a type of estrogen, and the brain hormones are luteinizing hormoneand follicle-stimulating hormone. The levels of these four hormones drive what we think of as the menstrual cycle, which exists to prepare an egg for fertilization and to make the uterine lining ready to receive a fertilized egg, should it arrive. 

Fig. 1. Female reproductive anatomy. Credit: Jeanne Garbarino.
In the theoretical 28-day cycle, fertilization (fusion of sperm and egg), if it occurs, will happen about 14 days in, timed with ovulation, or release of the egg from the ovary into the Fallopian tube or oviduct (see video–watch for the tiny egg–and Figure 1). The fertilized egg will immediately start dividing, and a ball of cells (called a blastocyst) that ultimately develops is expected to arrive at the uterus a few days later.
If the ball of cells shows up and implants in the uterine wall, the ovary continues producing progesterone to keep that fluffy, welcoming uterine lining in place. If nothing shows up, the ovaries drop output of estradiol and progesterone so that the uterus releases its lining of cells (which girls and women recognize as their “period”), and the cycle starts all over again.


A typical cycle

The typical cycle (which almost no girl or woman seems to have) begins on day 1 when a girl or woman starts her “period.” This bleeding is the shedding of the uterine lining, a letting go of tissue because the ovaries have bottomed out production of the hormones that keep the tissue intact. During this time, the brain and ovaries are in communication. In the first two weeks of the cycle, called the “follicular phase” (see Figure 2), an ovary has the job of promoting an egg to mature. The egg is protected inside a follicle that spends about 14 days reaching maturity. During this time, the ovary produces estrogen at increasing levels, which causes thickening of the uterine lining, until the estradiol hits a peak about midway through the cycle. This spike sends a hormone signal to the brain, which responds with a hormone spike of its own.

Fig. 2. Top: Day of cycle and phases. Second row: Body temperature (at waking) through cycle.
Third row: Hormones and their levels. Fourth row: What the ovaries are doing.
Fifth row: What the uterus is doing. Via Wikimedia Commons
In the figure, you can see this spike as the red line indicating luteinizing hormone. A smaller spike of follicle-stimulating hormone (blue line), also from the brain, occurs simultaneously. These two hormones along with the estradiol peak result in the follicle expelling the egg from the ovary into the Fallopian tube, or oviduct (Figure 3, step 4). That’s ovulation.
Fun fact: Right when the estrogen spikes, a woman’s body temperature will typically drop a bit (see “Basal body temperature” in the figure), so many women have used temperature monitoring to know that ovulation is happening. Some women also may experience a phenomenon called mittelschmerz, a pain sensation on the side where ovulation is occurring; ovaries trade off follicle duties with each cycle.  

The window of time for a sperm to meet the egg is usually very short, about a day. Meanwhile, as the purple line in the “hormone level” section of Figure 2 shows, the ovary in question immediately begins pumping out progesterone, which maintains that proliferated uterine lining should a ball of dividing cells show up.
Fig. 3. Follicle cycle in the ovary. Steps 1-3, follicular phase, during
which the follicle matures with the egg inside. Step 4: Ovulation, followed by
the luteal phase. Step 5: Corpus luteum (yellow body) releases progesterone.
Step 6: corpus luteum degrades if no implantation in uterus occurs.
Via Wikimedia Commons.
The structure in the ovary responsible for this phase, the luteal phase, is the corpus luteum (“yellow body”; see Figure 3, step 5), which puts out progesterone for a couple of weeks after ovulation to keep the uterine lining in place. If nothing implants, the corpus luteum degenerates (Figure 3, step 6). If implantation takes place, this structure will (should) instead continue producing progesterone through the early weeks of pregnancy to ensure that the lining doesn’t shed.

How do hormones in a pill stop all of this?

The hormones from the brain–luteinizing hormone and follicle-stimulating hormone– spike because the brain gets signals from the ovarian hormones. When a girl or woman takes the pills, which contain synthetics of ovarian hormones, the hormone dose doesn’t peak that way. Instead, the pills expose the girl or woman to a flat daily dose of hormones (synthetic estradiol and synthetic progesterone) or hormone (synthetic progesterone only). Without these peaks (and valleys), the brain doesn’t release the hormones that trigger follicle maturation or ovulation. Without follicle maturation and ovulation, no egg will be present for fertilization.

Assorted hormonal pills. Via Wikimedia Commons.
Most prescriptions of hormone pills are for packets of 28 pills. Typically, seven of these pills–sometimes fewer–are “dummy pills.” During the time a woman takes these dummy pills, her body shows the signs of withdrawal from the hormones, usually as a fairly light bleeding for those days, known as “withdrawal bleeding.” With the lowest-dose pills, the uterine lining may proliferate very little, so that this bleeding can be quite light compared to what a woman might experience under natural hormone influences.

How important are hormonal interventions for birth control?

Every woman has a story to tell, and the stories about the importance of hormonal birth control are legion. My personal story is this: I have three children. With our last son, I had two transient ischemic attacks at the end of the pregnancy, tiny strokes resulting from high blood pressure in the pregnancy. I had to undergo an immediate induction. This was the second time I’d had this condition, called pre-eclampsia, having also had this with our first son. My OB-GYN told me under no uncertain terms that I could not–should not–get pregnant again, as a pregnancy could be life threatening.

But I’m married, happily. As my sister puts it, my husband and I “like each other.” We had to have a failsafe method of ensuring that I wouldn’t become pregnant and endanger my life. For several years, hormonal medication made that possible. After I began having cluster headaches and high blood pressure on this medication in my forties, my OB-GYN and I talked about options, and we ultimately turned to surgery to prevent pregnancy.

But surgery is almost always not reversible. For a younger woman, it’s not the temporary option that hormonal pills provide. Hormonal interventions also are available in other forms, including as a vaginal ring, intrauterine device (some are hormonal), and implants, all reversible.

                                            

One of the most important things a society can do for its own health is to ensure that women in that society have as much control as possible over their reproduction. Thanks to hormonal interventions, although I’ve been capable of childbearing for 30 years, I’ve had only three children in that time. The ability to control my childbearing has meant I’ve been able to focus on being the best woman, mother, friend, and partner I can be, not only for myself and my family, but as a contributor to society, as well.

What are other uses of hormonal interventions?

Heavy, painful, or irregular periods. Did you read that part about how flat hormone inputs can mean less build up of the uterine lining and thus less bleeding and a shorter period? Many girls and women who lack hormonal interventions experience bleeding so heavy that they become anemic. This kind of bleeding can take a girl or woman out of commission for days at a time, in addition to threatening her health. Pain and irregular bleeding also are disabling and negatively affect quality of life on a frequent basis. Taking a single pill each day can make it all better. 


Unfortunately, the current political climate can take this situation–especially for teenage girls–and cast it as a personal moral failing with implications that a girl who takes hormonal medications is a “slut,” rather than the real fact that this hormonal intervention is literally maintaining the regularity of her health.

For some context, imagine that a whenever a boy or man produced sperm, it was painful or caused extensive blood loss that resulted in anemia. Would there be any issues raised with providing a medication that successfully addressed this problem?

Polycystic ovarian syndrome. This syndrome is, at its core, an imbalance of the ovarian hormones that is associated with all kinds of problems, from acne to infertility to overweight to uterine cancer. Guess what balances those hormones back out? Yes. Hormonal medication, otherwise known as The Pill.  

Again, for some context, imagine that this syndrome affected testes instead of ovaries, and caused boys and men to become infertile, experience extreme pain in the testes, gain weight, be at risk for diabetes, and lose their hair. Would there be an issue with providing appropriate hormonal medication to address this problem?

Acne. I had a friend in high school who was on hormonal medication, not because she was sexually active (she was not) but because she struggled for years with acne. This is an FDA-approved use of this medication.

Are there health benefits of hormonal interventions?

In a word, yes. They can protect against certain cancers, including ovarian and endometrial, or uterine, cancer. Women die from these cancers, and this protection is not negligible. They may also help protect against osteoporosis, or bone loss. In cases like mine, they protect against a potentially life-threatening pregnancy.

Speaking of pregnancy, access to contraception is “the only reliable way” to reduce unwanted pregnancies and abortion rates [PDF]. Pregnancy itself is far more threatening to a girl’s (in particular) or woman’s health than hormonal contraception.

Are there health risks with hormonal interventions?

Yes. No medical intervention is without risk. In the case of hormonal interventions, lifestyle habits such as smoking can enhance risk for high blood pressure and blood clots. Age can be a factor, although–as I can attest–women no longer have to stop taking hormonal interventions after age 35 as long as they are nonsmokers and blood pressure is normal. These interventions have been associated with a decrease in some cancers, as I’ve noted, but also with an increase in others, such as liver cancer, over the long term. The effect on breast cancer risk is mixed and may have to do with how long taking the medication delays childbearing. ETA: PLoS Medicine just published a paper (open access) addressing the effects of hormonal interventions on cancer risk.
———————————————————
By Emily Willingham, DXS Managing Editor
Opinions expressed in this piece are my own and do not necessarily reflect the opinions of all DXS editors or contributors.

Life and science challenges: flames, Hawkeye, the needle and the damage done

(source)

Of Heroin, Honorable Mentions, and Hawkeye: A day I will never forget

By Double X Science Biology Editor Jeanne Garbarino


“I look forward to seeing you in 3 months when you will be a whole person again.”

Those were my parting words to a special person in my life who was embarking on an undoubtedly difficult journey toward sobriety.  It was only 7:45am on Friday, June 1st, but already I had learned that the strings from a bikini top make a good tourniquet, and I actually held the syringe that, only moments before, contained a bolus of heroin.  I am still trying to believe that this really was the last time.  

As I attempted to wrap my head around what was happening, I remembered a description of a heroin high as told to me by a former addict.  According to this person, being on heroin feels like you’ve been swaddled in a warm blanket, and gently rocked by a loving mother, except the loving mother was actually the devil.  

Though I could never really understand what it feels like to be hooked on heroin, this helped me make some sense of it.  But, as much as I wanted to be sympathetic, I also wanted to grab my friend by the shoulders and scream.  “Why have you done this to yourself?  Why have you done this to us?”  It has truly been a difficult time, watching this person struggle.  And finding out that I can’t control any of it was probably the hardest lesson I’ve ever learned.

Still, life must go on.

I took a few deep breaths, which helped to quiet the tremble, and began to gather my thoughts.  What was it that I had to do today?  As if I flipped some switch, I began to plan out my day – renew my parking permit, finish that Western blot, read that thesis, and get that new post up on the site.  

Then, around 8:15am, I received an unexpected phone call.  It was Liz Bass from the Center of Communicating Science at Stony Brook University.  She was calling to see if I could make Alan Alda’s World Science Festival discussion about the Flame Challenge, which was to occur at 4pm that afternoon.  Not really knowing what was in store, I quickly accepted (um, hello, Alan Alda).  A second phone call about 20 minutes later informed me that I would be joining Alan on stage.  Was this really happening?  In about 30 minutes time, I went from despair to elation.  I also went to the store to buy a skirt since I was already in transit to my lab (and was dressed like a “scientist”).

As I sat on the train, I began to reflect.  Much of my free time during the month of March was dedicated to producing an entry to Alan Alda’s Flame Challenge contest, which, in an effort to raise science communication awareness, asked scientists from all over the world to define a flame to an 11 year old.  Because I enjoy working on a team, I asked my fellow scicommies, Deborah Berebichez and Perrin Ireland, to join me on this endeavor (three times the brain power!).  For several weeks, we worked on the script, and regularly discussed our progress during late night Google hangouts (which is a fantastic way to collaborate).  This was mostly due to the fact that we all have day jobs and obligations outside of work.  Luckily for me, Debbie and Perrin were willing to meet at a time that coincided after my children’s bedtime routine.

This experience was truly fun and rewarding.  Each of us has a certain set of strengths, which when combined, seemed to just synergize.  We literally examined every word in the script to make sure that it was clear, concise, and hopefully captivating.  Furthermore, we wanted to make sure that it was something an 11-year-old would both learn from and enjoy.

But, we did labor over one particular issue, and that was our use of the Bohr Model to represent an atom.  While this model might be commonplace in many classroom textbooks, scientists now know that electrons exist in orbitals, also known as electron clouds, and the calculations to determine the exact location(s) of an electron are based on probability.  Clearly, this was something very different than stating that electrons simply orbit around a nucleus.  

The analogy that electrons travel around the nucleus in the same way that planets travel around the sun is downright inaccurate.  However, this is an analogy that is still commonly used and is, in my opinion, a great example of how we sacrifice accuracy for simplicity.  I believe that this is the greatest challenge for a science communicator.  

As we talked through this issue, we tried to not lose site of the actual mission, which was to explain a flame to an 11 year old.  Would it help our story to break down the currently accepted atomic theory or would it detract from it?  In the end, we decided to keep our atomic structure simple, but noted that it was a simplified version of an atom.  We figured that by having this little disclaimer, it would inform our audience that there is more to it that what we showed, and maybe it would lead them down a road of scientific inquiry.  

Perhaps it was this attention to detail that landed our Flame Challenge video a spot in the top 15 entries (FYI there were close to 900 entries).   Or perhaps it was because our entry was cute and artistic.  Whatever the reason, we proudly accepted our honorable mention, and I was looking forward to discussing our video with the man himself.

Getting back to Friday, June 1st.   I arrived at the Paley Center for Media around 3:30pm (in a new skirt) and was immediately brought up to the 11th floor and into the green room of Alan Alda.  There, I met my fellow awardees (a combination of finalists and honorable mentions), and of course Alan Alda, who was fantastically charming and funny.  We all sat, around an old table, on which was a lovely array of cheese, nuts, banana chips, and get this, Swedish fish!  I don’t know what it was about the Swedish fish, but seeing this candy helped calm my nerves.

Alan helped us all to break the ice, and discussed his plans for the event.  Apparently we would be leading a panel discussion, and I would be on that panel.  On a stage.  In front of a very large audience.  And it was to be webcasted.  So I popped a few of those Swedish fish and told myself to not be nervous.

As my jaw worked to chew those sticky sweet candies, I couldn’t help but think about when I was a kid and how I used to sit with my dad and watch M*A*S*H.  I never would have believed you if you told me that I was going to be hanging out with Hawkeye when I was older.  But, there he was, telling us about the birth of the Flame Challenge.  I was tempted to ask him where Corporal Klinger is these days, but decided that my time would be better spent getting the plan for the panel firmed up in my brain.

After some quick chitchat, we were asked to make our way to the auditorium.  Seating was charted and mics were checked and around 4pm, it all began.  About an hour into it, we were asked to come on stage.  Each of our entries were highlighted, followed by a chance speak our piece.  Add in some Q&A from the audience and the panel discussion was complete.  A hearty round of applause later, I found myself getting whisked away for pictures.  

When the dust began to settle, I grabbed a beer and started to decompress.  I just couldn’t believe how this day turned out, especially given its start.  The stresses my family and I have been dealing with have certainly taken its toll on all of us, and I am grateful for that little dose of Hawkeye to help lighten things up.  I’m not sure if I will ever experience a day like that again, but that’s ok with me.