LEGO those gender stereotypes


My daughter, patiently waiting to get her own balloon jetpack.
Photo credit: Phil Blake
Why can’t you understand that my daughter wants a damn jetpack?

Last weekend, I took my daughters to a birthday party that featured a magician/balloon artist.  He was really fantastic with the kids, and kept their attention for close to 1 hour (ONE HOUR!!!).  At the end of his magic show, he began to furiously twist and tie balloons into these amazing shapes, promoting energetic and imaginative play.  Of these shapes was his own, very intricate invention: a jetpack.  

When he completed the first jetpack, I watched as the eyes of my five-year-old daughter, who happens to be a very sporty kid, light up with wonder.  She looked at me and smiled, indicating through her facial expression alone that she wanted the same balloon toy.  But, alas, when it was her turn for a balloon, her requests were met with opposition.  Here was the conversation:

Magician: How about a great butterfly balloon?

Daughter: No thanks, I’d like a jetpack please.

Magician: I think you should get a butterfly.

Daughter: I’d prefer a jetpack.

Magician: But you’re a girl.  Girls get butterflies.

Daughter (giving me a desperate look): But I really want a jetpack!

Realizing that my daughter was becoming unnecessarily upset, especially given the fact that there were 3 boys already engaging in play with their totally awesome jetpacks, myself and the hostess mother intervened.  We kindly reiterated my daughter’s requests for a jetpack.  And, so she was given a jetpack.

Later that evening, my daughter asked me why the magician insisted that she get a butterfly balloon when she explicitly asked for a jetpack.  Not wanting to reveal the realities of gender stereotype at that very point in time, I simply stated that sometimes we (a gender neutral “we”) might have to repeat ourselves so that others understand what we want.  Then she asked, “but why are butterflies only for girls?”

I was able to more or less able smooth it over with her, but it was clear to me that a very archaic reality was still in play, and my daughters were about to inherit it.  While I have nothing against typically female role-playing or dolls or princesses, I do not like when they are assumed to be the preferred activities.  I also do not like the idea that some toys, based on years of “market research,” are designed to basically pigeonhole girls into a June Cleaveresque state of being, especially without alternative play options.

The five LEGO Friends 
For instance, LEGO has recently launched a “for-girls-only” campaign, exemplified by the new “Friends” LEGO kit.  Slathered in pink and purple, this kit is designed around a narrative involving five friends and a pretend city named Heartlake.  Like nearly all cities, Heartlake boasts a bakery, a beauty salon, a cafe, and a veterinarian’s office to take care of sick animals.  However, unlike every city, Heartlake lacks things like a hospital, a fire department, a police station, and a local airport (thought they do have a flying club).  In essence, this toy is facilitating pretend play that centers ONLY on domestication, which absolutely limits both experiences and expectations for girls playing with this toy.  In essence, LEGO is assuming that all girls want the butterfly balloon instead of the jetpack.

Some might think, “jeeze, it’s just a toy!” and dismiss my objection to all that the Friends kit encompasses.  And perhaps when the Friends kit is offered in addition to a variety of toy types – gender neutral, masculine, and feminine – it may not have a significant effect on the mindset of its young, impressionable owner.  But what if that’s not the case?

Traditional LEGO bricks: For boys AND girls, goshdarnit!
LEGO has also gotten it wrong when it comes to the assumption that girls are not into the traditional LEGO blocks.  In fact, just last night, my daughter (the very one who wanted a jetpack) saw a commercial for a LEGO City product – I forgot which one – and asked that we put it on her ever expanding Christmas list.  Furthermore, both of my daughters are huge fans of the LEGO produced show on the Cartoon Network, Ninjago: Masters of Spinjitzu, which is based on the traditional LEGO figures and game.  My oldest daughter is arguably very sporty and may be more inclined to like “boy” things, but my younger daughter is chock-full of sugar and spice and yada yada yada.  She prefers to wear dresses, LOVES shoes, and demands to have her nails painted at all times.  And she still gets down with regular LEGOs and monster trucks and basketball and karate (all her own choices).  So why is LEGO shoving pastel bricks down girls’ throats?    

Gender and play

Play is an important part of cognitive development.  When children engage in play, they learn through discovery, become familiar with their own limitations, gain a better understanding of spatial relationships, become introduced to cause and effect, and, most relevant to this discussion, play exposes children to societal and cultural norms, as well as family values.  Placing limits on play can affect how a child sees him or herself in the world, which can impact both career and lifestyle choices.   

Research (and experience) has shown that the toys kids choose are shaped by societal expectations; however, these expectations are often dictated by marketing teams and their assumptions of what they think their customers want to see, perpetuating a toy culture that has changed little since the 1950s.  Furthermore, parents may impose toys that are gender “appropriate,” or even punish play that does not align with traditional gender expectations.  But what toys do kids actually want to play with?

In 2003, researchers at the University of Nebraska conducted a study to, in part, identify the impact that stereotyped toys have on play in young children.  There were 30 children who participated in this study, ranging in age from 18-47 months.  They were observed for 30 minutes in a room full of toys, with each toy defined as being traditionally masculine, feminine, or gender neutral.  Interestingly, when assessing the toy preferences of the children, boys tended to play with toys that were either masculine or gender neutral, whereas girls played with toys that were largely gender neutral.  These findings were consistent with previous studies showing that girls tend to play with toys that are not traditionally gendered (i.e. blocks, crayons, puzzles, bears, etc).  
Cherney, et al, 2003
Why is there a disconnect between the natural tendencies of toy choice among female children and what marketing executives deem as appropriate toys for girls?  While fantasy play based on domestic scenarios does have its place during normal development, restricting children to certain types of gendered toys can promote a stereotypical mindset that extends into adulthood, possibly adding to the gender inequity seen in the workplace.  Furthermore, assigning and marketing toys to a specific gender may also contribute to the gendering of household duties and/or recreational activities (i.e. only boys can play hockey or only girls do laundry).

This is obviously problematic for females, especially given the disproportionately low number of women executives and STEM professionals (just to name a few).  However, a conclusion from this study that I hadn’t even considered is the idea that overly feminized toys are not good for boys. 

How “girls only” is disadvantageous to boys

When looking at “masculine” versus “feminine” play, one would see that there is some non-overlap when it comes to learned skills.  For instance, “masculine” play often translates into being able to build something imaginative (like a spaceship or other cool technology) whereas “feminine” toys tend to encourage fantasy play surrounding taking care of the home (like putting the baby to sleep or ironing clothes). 

Both types of learning experiences are useful in today’s world, especially given that more women enter the work force and there is growing trend to more or less split household duties.  So when a kid is being offered toys that encourage play that has both masculine and feminine qualities, there is enhanced development of a variety of skills that ultimately translate into real, modern world scenarios.

However, the issue lies in the willingness to provide and play with strongly cross-gender-stereotyped toys.  Because of the number of toys having this quality, there is a huge gender divide when it comes to play, and boys are much less likely to cross gender lines, especially when toys are overtly “girly” (see figure above).  This is most often because of parents and caregivers who discourage play with “girl” toys, usually citing things like “they will make fun of you.”  Toys heavily marketed to match the stereotypical likes of girls, such as the Friends LEGO kit, clearly excludes boys from engaging in play that develops domestic skills (in addition to pigeonholing girls into thinking that girls can only do domestic things).   

Just yesterday, I came across an article on CNN discussing this issue, and it contained anecdotes similar to the one I described above.  The author described how a little girl was scoffed for having a Star-Wars thermos as well as how a little boy was told (by another little girl) that he could not have the mermaid doll he wanted.  My arguments thus far have been centered on developing a variety of skills through play, but I’d also like to add that limiting self-expression could be disastrous for the future wellbeing of an individual. 

There is some progress being made with regard to how toys are being presented in stores.  For instance, the same article described the new Toy Kingdom at Harrod’s, which does not conform to the traditionally separated “boy” and “girl” sections.  Instead, it has “worlds,” such as The Big Top(with circus acts and fairies) or Odyssey(with space crafts and gadgets).  This type of organization allows any child, regardless of gender, to engage in play that facilitates imagination and cognition.

Hey Toys’R Us, are you listening?                

 Final thoughts

Please don’t misinterpret this as being anti-pink, anti-princess, or anti-feminine.  I embrace my own femininity with vigor and pride.  I like to wear dresses and makeup and get my hair did.  Give me a pair of Manolo Blahniks and I will wear the shit out of them.  But I will do so while elbow deep in a biochemical analysis of intracellular cholesterol transport.    

My point is that if you are going to make a toy more appealing to girls by painting it pink, don’t forget to include facets that allow girls to be comfortable with their femininity while providing an experience that promotes empowerment and an unlimited imagination.  Furthermore, don’t exclude boys from getting an experience that helps them acquire skills that are applicable (and desirable) in the modern world.  As it stands right now, toys like the Friends LEGO kit does neither of these and I believe that they major fails, both of the Double X and the XY variety.    

For more, check out Feminist Frequency’s takedown of LEGO:



References:
Judith E. Owen Blakemore and Renee E. Centers, Characteristics of Boys’ and Girls’ Toys, Sex Roles, Vol. 53, Nos. 9/10, November 2005 [PDF, paywall]

Gerianne M. Alexander, Ph.D., An Evolutionary Perspective of Sex-Typed Toy Preferences: Pink, Blue, and the Brain, Archives of Sexual Behavior, Vol. 32, No. 1, , pp. 7–14, February 2003 [PDF, paywall]

Isabelle D. Cherney, Lisa Kelly-Vance, Katrina Gill Glover, Amy Ruane, and Brigette Oliver Ryalls, The Effects of Stereotyped Toys and Gender on Play Assessment in Children Aged 18-47 Months, Educational Psychology: An International Journal of Experimental Educational Psychology, 23:1, 95-106, 2003

Carol J. Auster and Claire S. Mansbach, The Gender Marketing of Toys: An Analysis of Color and Type of Toy on the Disney Store Website, Sex Roles, 2012 [abstract link]

Isabelle D. Cherney and  Kamala London, Gender-linked Differences in the Toys, Television Shows, Computer Games, and Outdoor Activities of 5- to 13-year-old Children, Sex Roles, 2006 [PDF]

Isabelle D. Cherney and Bridget Oliver Ryalls, Gender-linked differences in the incidental memory of children and adults, J Exp Child Psychol, 1999 Apr;72(4):305-28 [abstract link]

Biology Explainer: The big 4 building blocks of life–carbohydrates, fats, proteins, and nucleic acids

The short version
  • The four basic categories of molecules for building life are carbohydrates, lipids, proteins, and nucleic acids.
  • Carbohydrates serve many purposes, from energy to structure to chemical communication, as monomers or polymers.
  • Lipids, which are hydrophobic, also have different purposes, including energy storage, structure, and signaling.
  • Proteins, made of amino acids in up to four structural levels, are involved in just about every process of life.                                                                                                      
  • The nucleic acids DNA and RNA consist of four nucleotide building blocks, and each has different purposes.
The longer version
Life is so diverse and unwieldy, it may surprise you to learn that we can break it down into four basic categories of molecules. Possibly even more implausible is the fact that two of these categories of large molecules themselves break down into a surprisingly small number of building blocks. The proteins that make up all of the living things on this planet and ensure their appropriate structure and smooth function consist of only 20 different kinds of building blocks. Nucleic acids, specifically DNA, are even more basic: only four different kinds of molecules provide the materials to build the countless different genetic codes that translate into all the different walking, swimming, crawling, oozing, and/or photosynthesizing organisms that populate the third rock from the Sun.

                                                  

Big Molecules with Small Building Blocks

The functional groups, assembled into building blocks on backbones of carbon atoms, can be bonded together to yield large molecules that we classify into four basic categories. These molecules, in many different permutations, are the basis for the diversity that we see among living things. They can consist of thousands of atoms, but only a handful of different kinds of atoms form them. It’s like building apartment buildings using a small selection of different materials: bricks, mortar, iron, glass, and wood. Arranged in different ways, these few materials can yield a huge variety of structures.

We encountered functional groups and the SPHONC in Chapter 3. These components form the four categories of molecules of life. These Big Four biological molecules are carbohydrates, lipids, proteins, and nucleic acids. They can have many roles, from giving an organism structure to being involved in one of the millions of processes of living. Let’s meet each category individually and discover the basic roles of each in the structure and function of life.
Carbohydrates

You have met carbohydrates before, whether you know it or not. We refer to them casually as “sugars,” molecules made of carbon, hydrogen, and oxygen. A sugar molecule has a carbon backbone, usually five or six carbons in the ones we’ll discuss here, but it can be as few as three. Sugar molecules can link together in pairs or in chains or branching “trees,” either for structure or energy storage.

When you look on a nutrition label, you’ll see reference to “sugars.” That term includes carbohydrates that provide energy, which we get from breaking the chemical bonds in a sugar called glucose. The “sugars” on a nutrition label also include those that give structure to a plant, which we call fiber. Both are important nutrients for people.

Sugars serve many purposes. They give crunch to the cell walls of a plant or the exoskeleton of a beetle and chemical energy to the marathon runner. When attached to other molecules, like proteins or fats, they aid in communication between cells. But before we get any further into their uses, let’s talk structure.

The sugars we encounter most in basic biology have their five or six carbons linked together in a ring. There’s no need to dive deep into organic chemistry, but there are a couple of essential things to know to interpret the standard representations of these molecules.

Check out the sugars depicted in the figure. The top-left molecule, glucose, has six carbons, which have been numbered. The sugar to its right is the same glucose, with all but one “C” removed. The other five carbons are still there but are inferred using the conventions of organic chemistry: Anywhere there is a corner, there’s a carbon unless otherwise indicated. It might be a good exercise for you to add in a “C” over each corner so that you gain a good understanding of this convention. You should end up adding in five carbon symbols; the sixth is already given because that is conventionally included when it occurs outside of the ring.

On the left is a glucose with all of its carbons indicated. They’re also numbered, which is important to understand now for information that comes later. On the right is the same molecule, glucose, without the carbons indicated (except for the sixth one). Wherever there is a corner, there is a carbon, unless otherwise indicated (as with the oxygen). On the bottom left is ribose, the sugar found in RNA. The sugar on the bottom right is deoxyribose. Note that at carbon 2 (*), the ribose and deoxyribose differ by a single oxygen.

The lower left sugar in the figure is a ribose. In this depiction, the carbons, except the one outside of the ring, have not been drawn in, and they are not numbered. This is the standard way sugars are presented in texts. Can you tell how many carbons there are in this sugar? Count the corners and don’t forget the one that’s already indicated!

If you said “five,” you are right. Ribose is a pentose (pent = five) and happens to be the sugar present in ribonucleic acid, or RNA. Think to yourself what the sugar might be in deoxyribonucleic acid, or DNA. If you thought, deoxyribose, you’d be right.

The fourth sugar given in the figure is a deoxyribose. In organic chemistry, it’s not enough to know that corners indicate carbons. Each carbon also has a specific number, which becomes important in discussions of nucleic acids. Luckily, we get to keep our carbon counting pretty simple in basic biology. To count carbons, you start with the carbon to the right of the non-carbon corner of the molecule. The deoxyribose or ribose always looks to me like a little cupcake with a cherry on top. The “cherry” is an oxygen. To the right of that oxygen, we start counting carbons, so that corner to the right of the “cherry” is the first carbon. Now, keep counting. Here’s a little test: What is hanging down from carbon 2 of the deoxyribose?

If you said a hydrogen (H), you are right! Now, compare the deoxyribose to the ribose. Do you see the difference in what hangs off of the carbon 2 of each sugar? You’ll see that the carbon 2 of ribose has an –OH, rather than an H. The reason the deoxyribose is called that is because the O on the second carbon of the ribose has been removed, leaving a “deoxyed” ribose. This tiny distinction between the sugars used in DNA and RNA is significant enough in biology that we use it to distinguish the two nucleic acids.

In fact, these subtle differences in sugars mean big differences for many biological molecules. Below, you’ll find a couple of ways that apparently small changes in a sugar molecule can mean big changes in what it does. These little changes make the difference between a delicious sugar cookie and the crunchy exoskeleton of a dung beetle.

Sugar and Fuel

A marathon runner keeps fuel on hand in the form of “carbs,” or sugars. These fuels provide the marathoner’s straining body with the energy it needs to keep the muscles pumping. When we take in sugar like this, it often comes in the form of glucose molecules attached together in a polymer called starch. We are especially equipped to start breaking off individual glucose molecules the minute we start chewing on a starch.

Double X Extra: A monomer is a building block (mono = one) and a polymer is a chain of monomers. With a few dozen monomers or building blocks, we get millions of different polymers. That may sound nutty until you think of the infinity of values that can be built using only the numbers 0 through 9 as building blocks or the intricate programming that is done using only a binary code of zeros and ones in different combinations.

Our bodies then can rapidly take the single molecules, or monomers, into cells and crack open the chemical bonds to transform the energy for use. The bonds of a sugar are packed with chemical energy that we capture to build a different kind of energy-containing molecule that our muscles access easily. Most species rely on this process of capturing energy from sugars and transforming it for specific purposes.

Polysaccharides: Fuel and Form

Plants use the Sun’s energy to make their own glucose, and starch is actually a plant’s way of storing up that sugar. Potatoes, for example, are quite good at packing away tons of glucose molecules and are known to dieticians as a “starchy” vegetable. The glucose molecules in starch are packed fairly closely together. A string of sugar molecules bonded together through dehydration synthesis, as they are in starch, is a polymer called a polysaccharide (poly = many; saccharide = sugar). When the monomers of the polysaccharide are released, as when our bodies break them up, the reaction that releases them is called hydrolysis.

Double X Extra: The specific reaction that hooks one monomer to another in a covalent bond is called dehydration synthesis because in making the bond–synthesizing the larger molecule–a molecule of water is removed (dehydration). The reverse is hydrolysis (hydro = water; lysis = breaking), which breaks the covalent bond by the addition of a molecule of water.

Although plants make their own glucose and animals acquire it by eating the plants, animals can also package away the glucose they eat for later use. Animals, including humans, store glucose in a polysaccharide called glycogen, which is more branched than starch. In us, we build this energy reserve primarily in the liver and access it when our glucose levels drop.

Whether starch or glycogen, the glucose molecules that are stored are bonded together so that all of the molecules are oriented the same way. If you view the sixth carbon of the glucose to be a “carbon flag,” you’ll see in the figure that all of the glucose molecules in starch are oriented with their carbon flags on the upper left.

The orientation of monomers of glucose in polysaccharides can make a big difference in the use of the polymer. The glucoses in the molecule on the top are all oriented “up” and form starch. The glucoses in the molecule on the bottom alternate orientation to form cellulose, which is quite different in its function from starch.

Storing up sugars for fuel and using them as fuel isn’t the end of the uses of sugar. In fact, sugars serve as structural molecules in a huge variety of organisms, including fungi, bacteria, plants, and insects.

The primary structural role of a sugar is as a component of the cell wall, giving the organism support against gravity. In plants, the familiar old glucose molecule serves as one building block of the plant cell wall, but with a catch: The molecules are oriented in an alternating up-down fashion. The resulting structural sugar is called cellulose.

That simple difference in orientation means the difference between a polysaccharide as fuel for us and a polysaccharide as structure. Insects take it step further with the polysaccharide that makes up their exoskeleton, or outer shell. Once again, the building block is glucose, arranged as it is in cellulose, in an alternating conformation. But in insects, each glucose has a little extra added on, a chemical group called an N-acetyl group. This addition of a single functional group alters the use of cellulose and turns it into a structural molecule that gives bugs that special crunchy sound when you accidentally…ahem…step on them.

These variations on the simple theme of a basic carbon-ring-as-building-block occur again and again in biological systems. In addition to serving roles in structure and as fuel, sugars also play a role in function. The attachment of subtly different sugar molecules to a protein or a lipid is one way cells communicate chemically with one another in refined, regulated interactions. It’s as though the cells talk with each other using a specialized, sugar-based vocabulary. Typically, cells display these sugary messages to the outside world, making them available to other cells that can recognize the molecular language.

Lipids: The Fatty Trifecta

Starch makes for good, accessible fuel, something that we immediately attack chemically and break up for quick energy. But fats are energy that we are supposed to bank away for a good long time and break out in times of deprivation. Like sugars, fats serve several purposes, including as a dense source of energy and as a universal structural component of cell membranes everywhere.

Fats: the Good, the Bad, the Neutral

Turn again to a nutrition label, and you’ll see a few references to fats, also known as lipids. (Fats are slightly less confusing that sugars in that they have only two names.) The label may break down fats into categories, including trans fats, saturated fats, unsaturated fats, and cholesterol. You may have learned that trans fats are “bad” and that there is good cholesterol and bad cholesterol, but what does it all mean?

Let’s start with what we mean when we say saturated fat. The question is, saturated with what? There is a specific kind of dietary fat call the triglyceride. As its name implies, it has a structural motif in which something is repeated three times. That something is a chain of carbons and hydrogens, hanging off in triplicate from a head made of glycerol, as the figure shows.  Those three carbon-hydrogen chains, or fatty acids, are the “tri” in a triglyceride. Chains like this can be many carbons long.

Double X Extra: We call a fatty acid a fatty acid because it’s got a carboxylic acid attached to a fatty tail. A triglyceride consists of three of these fatty acids attached to a molecule called glycerol. Our dietary fat primarily consists of these triglycerides.

Triglycerides come in several forms. You may recall that carbon can form several different kinds of bonds, including single bonds, as with hydrogen, and double bonds, as with itself. A chain of carbon and hydrogens can have every single available carbon bond taken by a hydrogen in single covalent bond. This scenario of hydrogen saturation yields a saturated fat. The fat is saturated to its fullest with every covalent bond taken by hydrogens single bonded to the carbons.

Saturated fats have predictable characteristics. They lie flat easily and stick to each other, meaning that at room temperature, they form a dense solid. You will realize this if you find a little bit of fat on you to pinch. Does it feel pretty solid? That’s because animal fat is saturated fat. The fat on a steak is also solid at room temperature, and in fact, it takes a pretty high heat to loosen it up enough to become liquid. Animals are not the only organisms that produce saturated fat–avocados and coconuts also are known for their saturated fat content.

The top graphic above depicts a triglyceride with the glycerol, acid, and three hydrocarbon tails. The tails of this saturated fat, with every possible hydrogen space occupied, lie comparatively flat on one another, and this kind of fat is solid at room temperature. The fat on the bottom, however, is unsaturated, with bends or kinks wherever two carbons have double bonded, booting a couple of hydrogens and making this fat unsaturated, or lacking some hydrogens. Because of the space between the bumps, this fat is probably not solid at room temperature, but liquid.

You can probably now guess what an unsaturated fat is–one that has one or more hydrogens missing. Instead of single bonding with hydrogens at every available space, two or more carbons in an unsaturated fat chain will form a double bond with carbon, leaving no space for a hydrogen. Because some carbons in the chain share two pairs of electrons, they physically draw closer to one another than they do in a single bond. This tighter bonding result in a “kink” in the fatty acid chain.

In a fat with these kinks, the three fatty acids don’t lie as densely packed with each other as they do in a saturated fat. The kinks leave spaces between them. Thus, unsaturated fats are less dense than saturated fats and often will be liquid at room temperature. A good example of a liquid unsaturated fat at room temperature is canola oil.

A few decades ago, food scientists discovered that unsaturated fats could be resaturated or hydrogenated to behave more like saturated fats and have a longer shelf life. The process of hydrogenation–adding in hydrogens–yields trans fat. This kind of processed fat is now frowned upon and is being removed from many foods because of its associations with adverse health effects. If you check a food label and it lists among the ingredients “partially hydrogenated” oils, that can mean that the food contains trans fat.

Double X Extra: A triglyceride can have up to three different fatty acids attached to it. Canola oil, for example, consists primarily of oleic acid, linoleic acid, and linolenic acid, all of which are unsaturated fatty acids with 18 carbons in their chains.

Why do we take in fat anyway? Fat is a necessary nutrient for everything from our nervous systems to our circulatory health. It also, under appropriate conditions, is an excellent way to store up densely packaged energy for the times when stores are running low. We really can’t live very well without it.

Phospholipids: An Abundant Fat

You may have heard that oil and water don’t mix, and indeed, it is something you can observe for yourself. Drop a pat of butter–pure saturated fat–into a bowl of water and watch it just sit there. Even if you try mixing it with a spoon, it will just sit there. Now, drop a spoon of salt into the water and stir it a bit. The salt seems to vanish. You’ve just illustrated the difference between a water-fearing (hydrophobic) and a water-loving (hydrophilic) substance.

Generally speaking, compounds that have an unequal sharing of electrons (like ions or anything with a covalent bond between oxygen and hydrogen or nitrogen and hydrogen) will be hydrophilic. The reason is that a charge or an unequal electron sharing gives the molecule polarity that allows it to interact with water through hydrogen bonds. A fat, however, consists largely of hydrogen and carbon in those long chains. Carbon and hydrogen have roughly equivalent electronegativities, and their electron-sharing relationship is relatively nonpolar. Fat, lacking in polarity, doesn’t interact with water. As the butter demonstrated, it just sits there.

There is one exception to that little maxim about fat and water, and that exception is the phospholipid. This lipid has a special structure that makes it just right for the job it does: forming the membranes of cells. A phospholipid consists of a polar phosphate head–P and O don’t share equally–and a couple of nonpolar hydrocarbon tails, as the figure shows. If you look at the figure, you’ll see that one of the two tails has a little kick in it, thanks to a double bond between the two carbons there.

Phospholipids form a double layer and are the major structural components of cell membranes. Their bend, or kick, in one of the hydrocarbon tails helps ensure fluidity of the cell membrane. The molecules are bipolar, with hydrophilic heads for interacting with the internal and external watery environments of the cell and hydrophobic tails that help cell membranes behave as general security guards.

The kick and the bipolar (hydrophobic and hydrophilic) nature of the phospholipid make it the perfect molecule for building a cell membrane. A cell needs a watery outside to survive. It also needs a watery inside to survive. Thus, it must face the inside and outside worlds with something that interacts well with water. But it also must protect itself against unwanted intruders, providing a barrier that keeps unwanted things out and keeps necessary molecules in.

Phospholipids achieve it all. They assemble into a double layer around a cell but orient to allow interaction with the watery external and internal environments. On the layer facing the inside of the cell, the phospholipids orient their polar, hydrophilic heads to the watery inner environment and their tails away from it. On the layer to the outside of the cell, they do the same.
As the figure shows, the result is a double layer of phospholipids with each layer facing a polar, hydrophilic head to the watery environments. The tails of each layer face one another. They form a hydrophobic, fatty moat around a cell that serves as a general gatekeeper, much in the way that your skin does for you. Charged particles cannot simply slip across this fatty moat because they can’t interact with it. And to keep the fat fluid, one tail of each phospholipid has that little kick, giving the cell membrane a fluid, liquidy flow and keeping it from being solid and unforgiving at temperatures in which cells thrive.

Steroids: Here to Pump You Up?

Our final molecule in the lipid fatty trifecta is cholesterol. As you may have heard, there are a few different kinds of cholesterol, some of which we consider to be “good” and some of which is “bad.” The good cholesterol, high-density lipoprotein, or HDL, in part helps us out because it removes the bad cholesterol, low-density lipoprotein or LDL, from our blood. The presence of LDL is associated with inflammation of the lining of the blood vessels, which can lead to a variety of health problems.

But cholesterol has some other reasons for existing. One of its roles is in the maintenance of cell membrane fluidity. Cholesterol is inserted throughout the lipid bilayer and serves as a block to the fatty tails that might otherwise stick together and become a bit too solid.

Cholesterol’s other starring role as a lipid is as the starting molecule for a class of hormones we called steroids or steroid hormones. With a few snips here and additions there, cholesterol can be changed into the steroid hormones progesterone, testosterone, or estrogen. These molecules look quite similar, but they play very different roles in organisms. Testosterone, for example, generally masculinizes vertebrates (animals with backbones), while progesterone and estrogen play a role in regulating the ovulatory cycle.

Double X Extra: A hormone is a blood-borne signaling molecule. It can be lipid based, like testosterone, or short protein, like insulin.

Proteins

As you progress through learning biology, one thing will become more and more clear: Most cells function primarily as protein factories. It may surprise you to learn that proteins, which we often talk about in terms of food intake, are the fundamental molecule of many of life’s processes. Enzymes, for example, form a single broad category of proteins, but there are millions of them, each one governing a small step in the molecular pathways that are required for living.

Levels of Structure

Amino acids are the building blocks of proteins. A few amino acids strung together is called a peptide, while many many peptides linked together form a polypeptide. When many amino acids strung together interact with each other to form a properly folded molecule, we call that molecule a protein.

For a string of amino acids to ultimately fold up into an active protein, they must first be assembled in the correct order. The code for their assembly lies in the DNA, but once that code has been read and the amino acid chain built, we call that simple, unfolded chain the primary structure of the protein.

This chain can consist of hundreds of amino acids that interact all along the sequence. Some amino acids are hydrophobic and some are hydrophilic. In this context, like interacts best with like, so the hydrophobic amino acids will interact with one another, and the hydrophilic amino acids will interact together. As these contacts occur along the string of molecules, different conformations will arise in different parts of the chain. We call these different conformations along the amino acid chain the protein’s secondary structure.

Once those interactions have occurred, the protein can fold into its final, or tertiary structure and be ready to serve as an active participant in cellular processes. To achieve the tertiary structure, the amino acid chain’s secondary interactions must usually be ongoing, and the pH, temperature, and salt balance must be just right to facilitate the folding. This tertiary folding takes place through interactions of the secondary structures along the different parts of the amino acid chain.

The final product is a properly folded protein. If we could see it with the naked eye, it might look a lot like a wadded up string of pearls, but that “wadded up” look is misleading. Protein folding is a carefully regulated process that is determined at its core by the amino acids in the chain: their hydrophobicity and hydrophilicity and how they interact together.

In many instances, however, a complete protein consists of more than one amino acid chain, and the complete protein has two or more interacting strings of amino acids. A good example is hemoglobin in red blood cells. Its job is to grab oxygen and deliver it to the body’s tissues. A complete hemoglobin protein consists of four separate amino acid chains all properly folded into their tertiary structures and interacting as a single unit. In cases like this involving two or more interacting amino acid chains, we say that the final protein has a quaternary structure. Some proteins can consist of as many as a dozen interacting chains, behaving as a single protein unit.

A Plethora of Purposes

What does a protein do? Let us count the ways. Really, that’s almost impossible because proteins do just about everything. Some of them tag things. Some of them destroy things. Some of them protect. Some mark cells as “self.” Some serve as structural materials, while others are highways or motors. They aid in communication, they operate as signaling molecules, they transfer molecules and cut them up, they interact with each other in complex, interrelated pathways to build things up and break things down. They regulate genes and package DNA, and they regulate and package each other.

As described above, proteins are the final folded arrangement of a string of amino acids. One way we obtain these building blocks for the millions of proteins our bodies make is through our diet. You may hear about foods that are high in protein or people eating high-protein diets to build muscle. When we take in those proteins, we can break them apart and use the amino acids that make them up to build proteins of our own.

Nucleic Acids

How does a cell know which proteins to make? It has a code for building them, one that is especially guarded in a cellular vault in our cells called the nucleus. This code is deoxyribonucleic acid, or DNA. The cell makes a copy of this code and send it out to specialized structures that read it and build proteins based on what they read. As with any code, a typo–a mutation–can result in a message that doesn’t make as much sense. When the code gets changed, sometimes, the protein that the cell builds using that code will be changed, too.

Biohazard!The names associated with nucleic acids can be confusing because they all start with nucle-. It may seem obvious or easy now, but a brain freeze on a test could mix you up. You need to fix in your mind that the shorter term (10 letters, four syllables), nucleotide, refers to the smaller molecule, the three-part building block. The longer term (12 characters, including the space, and five syllables), nucleic acid, which is inherent in the names DNA and RNA, designates the big, long molecule.

DNA vs. RNA: A Matter of Structure

DNA and its nucleic acid cousin, ribonucleic acid, or RNA, are both made of the same kinds of building blocks. These building blocks are called nucleotides. Each nucleotide consists of three parts: a sugar (ribose for RNA and deoxyribose for DNA), a phosphate, and a nitrogenous base. In DNA, every nucleotide has identical sugars and phosphates, and in RNA, the sugar and phosphate are also the same for every nucleotide.

So what’s different? The nitrogenous bases. DNA has a set of four to use as its coding alphabet. These are the purines, adenine and guanine, and the pyrimidines, thymine and cytosine. The nucleotides are abbreviated by their initial letters as A, G, T, and C. From variations in the arrangement and number of these four molecules, all of the diversity of life arises. Just four different types of the nucleotide building blocks, and we have you, bacteria, wombats, and blue whales.

RNA is also basic at its core, consisting of only four different nucleotides. In fact, it uses three of the same nitrogenous bases as DNA–A, G, and C–but it substitutes a base called uracil (U) where DNA uses thymine. Uracil is a pyrimidine.

DNA vs. RNA: Function Wars

An interesting thing about the nitrogenous bases of the nucleotides is that they pair with each other, using hydrogen bonds, in a predictable way. An adenine will almost always bond with a thymine in DNA or a uracil in RNA, and cytosine and guanine will almost always bond with each other. This pairing capacity allows the cell to use a sequence of DNA and build either a new DNA sequence, using the old one as a template, or build an RNA sequence to make a copy of the DNA.

These two different uses of A-T/U and C-G base pairing serve two different purposes. DNA is copied into DNA usually when a cell is preparing to divide and needs two complete sets of DNA for the new cells. DNA is copied into RNA when the cell needs to send the code out of the vault so proteins can be built. The DNA stays safely where it belongs.

RNA is really a nucleic acid jack-of-all-trades. It not only serves as the copy of the DNA but also is the main component of the two types of cellular workers that read that copy and build proteins from it. At one point in this process, the three types of RNA come together in protein assembly to make sure the job is done right.


 By Emily Willingham, DXS managing editor 
This material originally appeared in similar form in Emily Willingham’s Complete Idiot’s Guide to College Biology

Double Xpression: Karyn Traphagen, co-founder of ScienceOnline

Hanging out with Al.

Karyn Traphagen is the Executive Director of ScienceOnline Inc., a non-profit organization representing a diverse science community that cultivates conversations both online and face-to-face. At face-to-face events, including a perennially popular signature conference in North Carolina, ScienceOnline encourages creativity, collaborations, connections, and fun. Through social media, the ScienceOnline community listens, supports, shares, recommends, and reaches out. ScienceOnline also develops tools such as ScienceSeeker news river and curates The Open Lab, an annual anthology of the best science writing on the web.

Karyn previously taught physics at the high school, undergraduate and graduate levels. As a teacher, she sought to connect the science of the curriculum with the everyday life of her students and to instill lifelong skills for learning. Karyn completed graduate work at the University of Virginia and also studied at the University of Stellenbosch (South Africa). She has trained physics teachers through the University of Virginia’s Physics department and traveled to South Sudan to conduct professional development training for local teachers. She has more than 10 years of experience developing and teaching online courses.

In addition to her science work, Karyn maintains a freelance graphic design studio. Her latest project was a work on Ancient Near Eastern royal inscriptions.

Karyn lives in Durham, North Carolina, and she encourages readers wherever they are to Stay Curious at her blog. Connect with her on Twitter or Google+. You can also follow ScienceOnline on Twitter and Google+.  [Editor's note: Karyn is also an official ADK46er, which is pretty incredible.]



DXS: First, can you give me a quick overview of what your scientific background is and your current connection to science?

Karyn enjoys creating art with…LEGOS!

I remember one of my favorite childhood gifts was a chemistry set and a microscope. My mother was a great role model. She left a job as a chemist to get married and raise a family, but she always instilled in me the attitude that if I was interested in any subject, I could learn it and do it. I always accepted a challenge.

Although I attended excellent public schools, I had to overcome some significant challenges. Our family was one of the only ones in our town designated as eligible for the new free lunch program, and I started high school when Title IX was passed (go ahead, do the math). This was an exciting time for girls in school–but not just for sports (our legacy to our 8thgrade class was a change in our public (!) school policy to allow girls to wear jeans).

I was thrilled to be the one of two females on our Math League squad and to have access to advanced science courses and labs in high school. It seems I always took a circuitous route though. I helped change the rules so that I could graduate in 3 years. I was very fortunate to have lots of opportunities after graduation (including being recruited for the first female class at West Point). But then, I took on other responsibilities and went back to school later to finish my degrees.

In addition to research, I have taught high school physics and physical science, undergrad physics (I especially liked the Physics for Non-Science majors!), and helped to develop a degree program in the university physics department for high school physics teachers. I’ve led sailing trips in the Bahamas for biology students and I’ve been trained by the American Meteorological Society to use live data in classrooms. I’ve even been a programmer. Obviously I’m interested in too many things for my own good.

Currently, I am the Executive Director of ScienceOnline, a non-profit organization that facilitates discussion about science through online networks and face-to-face events. We welcome all to the conversation – scientists, journalists, librarians, educators, students, and anyone interested in engaging in science. Four words that help to define ScienceOnline are: Connections, conversations, collaborations, and community. We also develop projects that work to connect scientists and their research to the public. I’m thrilled to be representing this thriving community, and I enjoy working with so many talented, brilliant, and fun people.

Karyn has traveled to South Sudan to conduct professional development training for local teachers.

DXS: What ways do you express yourself creatively that may not have a single thing to do with science?

I have an insatiable thirst to learn and try new things, which has resulted in a string of very diverse jobs. Over the years my creative activities (and jobs) have included medieval calligraphy, art, photography, mathematics (I count this as creative), LEGO creations, graphic design, garment creation, gardening, construction projects, violin/guitar (as musician and also instructor), studying ancient languages and writing systems (both real and created).

On the surface, many people think these are not “science-y” but really, they are all about science. Seeing that connection is something I love to introduce people to. My science career has included research that helps create more bio-fidelic crash test dummies (I worked with cadavers–this makes for great party stories), meteorology, high school physics teacher, and university physics instructor. I used to think that people would think I was flighty or unable to commit to a project. Now I see the benefits of having been successful at so many different skills and fields of study. The key was seeing how they all tapped into my curiosity and creativity.

DXS: Do you find that your scientific background informs your creativity, even though what you do may not specifically be scientific?

Definitely. Paying attention to the details of the world gives me opportunity to see beauty, symmetry, order, and chaos in unusual places. I am thrilled by the macro and the micro vision of our universe and lives (which is why I continue to study other fields of science in addition to physics). These are not only realms to explore with experiments, but to experience emotionally and to communicate creatively. I have learned to appreciate the details in science and that carries over into the art, photography, design, and construction projects that I may spend time on. Even my tattoo (snow crystals) reflects both beauty and science (and a lot of personal meaning too!)

DXS: Have you encountered situations in which your expression of yourself outside the bounds of science has led to people viewing you differently–either more positively or more negatively?

I think that sometimes the more conventional creative side of my life makes me seem more “human” and approachable. When non-science people ask what I do, I don’t usually start with “physics” in the answer because that often is hard for people to relate to and the conversation dies. But if they get to know some things I am interested in or the diversity of things I’ve created, and THEN learn about my science background, they are more likely to perceive me as more than a physics geek. At that point they feel more comfortable asking questions about science.

On the other hand, some of my science colleagues in the physics department saw those other activities as something that took me away from time that could be spent on physics. Even if they thought my non-science activities might be amazing they minimized their value. Thinking back now, maybe this is why I keep so much of what I do to myself and it takes time to draw out of me all the things that I have had the joy of learning and doing.

I think there is a geek aspect to many of the things I like to do. They don’t completely overlap with the same brand of geekiness though. It’s just that you align yourself with a community that is very engaged in a certain niche. A tribe if you will. Some of these tribes don’t understand each other very well, so I sometimes feel like an ambassador of the various communities I am a member of.

DXS: Have you found that your non-science expression of creativity/activity/etc. has in any way informed your understanding of science or how you may talk about it or present it to others?

Karyn collecting water samples in Molokai, Hawaii

Yes, I used to focus more on the narrow aspects of my field. Now I try to see interconnectedness—not only with other fields of science, but more broadly with day-to-day life. My “non-science” expressions are really gateways into understanding the science better or being willing to think more creatively about how to solve a research problem. Bottom line: I always want to stay curious. We don’t value curiosity enough. I think curiosity undergirds creativity. Curiosity doesn’t just beget science questions. We also have to ask, “What would happen if I mixed these colors together?” or “How small can I write with this pen nib and ink?” or “What kind of effects can I create in this photograph by changing the lens?”

DXS: How comfortable are you expressing your femininity and in what ways? How does this expression influence people’s perception of you in, say, a scientifically oriented context?

I really tried to think about this carefully. In the physics department at the university where I worked, my main concern was not the fact that I was in the minority (or that there were more men’s rooms in the building), but that the lab was freezing and I needed to keep warmer layers at work to survive! Basically, the lab protocols determined what kind of clothing and shoes I could wear, how I kept my hair (out of the way!) etc. I never felt those things were anything particularly against being feminine, but I didn’t go out of my way to wear makeup or dress special.

On the other hand, I do think that female visitors and students who dressed more feminine were definitely treated differently. I desperately wanted to be valued for my ideas and work ethic and not what I looked like or which bathroom I used, so I was probably more affected by others attitudes than I realize(d).

Probably the most feminine thing I’ve ever done was to have children and show my priority for them (I realize that there are fathers who do this too, so it may be more a parent thing than a feminine thing, but in the society I live in, it is still the mothers who bear the lion’s share of the responsibility for child-rearing). I had colleagues who could not understand some choices I made because of family. They felt I was wasting my potential (whatever that means!).

Now that I am not in a lab and don’t have small children at home, I alternate between tomboy and professional attire. I do like that it is easier to create a more feminine professional wardrobe these days.

I find it odd that women are complimented for their appearance more than men. I don’t think people realize how out-of-balance this is. I try to notice and mention men’s clothing and appearance as a small step toward equalizing that.

DXS: Do you think that the combination of your non-science creativity and scientific-related activity shifts people’s perspectives or ideas about what a scientist or science communicator is? If you’re aware of such an influence, in what way, if any, do you use it to (for example) reach a different corner of your audience or present science in a different sort of way?

I think that getting the attention of whatever audience you are addressing is paramount. You may have something wonderful to share, but if you don’t have their attention, it will fall to the ground. I want to develop a relationship with people in order to get them to trust me, believe me, and be interested in what I have to say. Dispensing information is not enough.

The manner in which I communicate makes all the difference in how the person will engage the topic. To do this, I need to listen first and understand who my audience is. Using creativity, I will then try to connect with each person or audience in a way that I hope will best bring them along the journey I have experienced. Some people will want to know more specific details, others will want to know how it affects their lives, and still others will challenge and question my thoughts and methods.

Using visual arts (e.g. fine arts, video, etc) can be as important as a data chart. As long as the conversation continues, then I have been successful in communicating. My goal is to make someone (whether a researcher or a teenager) so interested that they will take on a search for more information on their own. That’s really how we learn and retain best—to explore something we have invested our own time in.

I also use a variety of outlets for communication. There are definitely important and different roles for journals, conference presentations, Twitter, blogs, Google+, etc. These diverse outlets are just as important as creative ways of presenting material. Again, you must always be aware of your audience. I would use a museum’s Twitter account to communicate differently than I would my regular account.

DXS: If you had something you could say to the younger you about the role of expression and creativity in your chosen career path, what would you say?

Knowing myself, I’m not so sure that the younger me would listen to any advice I would give! In some ways, going through the experiences is what made me who I am and there are no short cuts for that. However, there are definitely things that would have been great to learn earlier on.

So, I would tell the younger me not to try to keep creative interests and career objectives separate or think that they have to be at odds with each other. They don’t need to be in competition for your attention. Creativity, job skills, life experiences, and responsibilities can interweave. You will not only be more content, but probably more productive in all your endeavors.

I would also tell her that “no” is not a dirty word and that it is ok to be selective in how you spend your time.

On this Father’s Day, let’s remember the allofathers, too

A big brother, practicing the art of allofathering.

By Emily Willingham, DXS managing editor

On Mother’s Day, scientist and blogger Kate Clancy wrote an excellent post at Scientific American about allomothers, the people in your circle of friends and family who support mothers in their mothering. In thanking the allomothers in her life, Clancy included in that list her husband because men can be allomothers, too. Although this site is called Double X because we want to bring evidence-based science–and yes, some snark–to women, tomorrow is Father’s Day. So today, we’re shifting into XY gear and talking about allofathers. 

We all have or had fathers. Some for better, some for worse, some we may never have even seen. Many of us also have had other men in our lives who participated in a father role or who supported our fathers in the same way that Clancy writes about supporting mothers. The funny thing is, a Google search on “allofathers” confuses Google so badly that it actually declines to do that search and instead offers a search on “allomothers.” When you force it to search “allofather,” you get only three pages of scanty hits, some of which reference a more general “alloparenting.”

Why no love for the allofathers, Google? Fathers these days need allo support as much as mothers, or at least, the fathers I know do. As Paul Raeburn writes in this Father’s Day piece:

The grindingly slow recovery of the economy is making it hard for fathers to earn enough to help support their families. Those who do have jobs are working more hours, taking time away from checkers and family dinners. In many families, both parents are working, leaving less time for fathers and partners to work on their relationships with each other.

He notes that fathers these days thrive in a habitat that allows the time with family, time to do things other than make a living wage, although that remains an important feature of fatherhood and a key goal of every father I know. In fact, that emphasis means that my spouse–who is also the father of my children–is at work right now, on Saturday, after already putting in overtime through the week. Indeed, he may have to work tomorrow, on Father’s Day, and is looking at a midnight deadline Monday night. There will be no games of chess with Dad this weekend. 

The work is difficult enough and in a trying environment. And pushing against this need to work hard and keep a job is also a desire to have the kind of family time those of us in the United States have come to expect on weekends, particularly when we work salaried weekday jobs that ostensibly promise weekends off. That means that on top of the anxiety associated with stacking 20 or 30 extra hours onto a 40-hour work week to meet a tough deadline, my husband and my children’s father also feels angst about this inability to be a part of our family time. These are first-world problems, I realize, but that doesn’t make them any less real for us and our children.

So I’m allofathering for him. Yes, I’m the mother, but I’m also supporting my husband’s fathering role, in part by doing things that assure him that we’re all OK, and in part by doing things with our sons that people might think of as stereotypically “dad” activities: fishing, baseball, football, soccer, hiking. But I also have taken on the things he usually does around the house, like emptying the dishwasher Every Single Time, vacuuming, and doing the laundry. Bless the man, he usually does all the laundry. But I do miss the other allofathers in our lives.

We no longer live a stone’s throw or a short-ish drive from our extended family, but when we did and still when we visit, the allofathers are abundant. My children have uncles who take them fishing, monitor group infighting among nine cousins, catch snakes with them, play football and soccer with them, and take them on hikes and (fruitless) dove hunting. My husband does his share of allofathering for their children, reading books and playing with the youngest, making dinners, and serving as an ever-necessary playground monitor. And my children have a grandfather who builds things in his shop for them, closely monitors their BB gun target practice, wanders for hours with them in nearby woods to find animal bones, and patiently acknowledges every single mystifying LEGO construction and rambling imaginary story surrounding it.   

All of these alloparents expand the parenting and support and safety net for my children. They are the village raising my sons, and my children trust them implicitly. These allofathers summon up reserves of energy they probably didn’t know they had and in spending this time with their nephews or grandchildren, they add layers of complexity and different insights from father figures that my children wouldn’t otherwise have. They also model for children like my sons the many roles a man can have through life.

As humans, we fit several features of species that engage in this extra-parental parenting, including typically having a single offspring at a time, a relatively small number of offspring over a lifetime, and an extended period of parental investment, and being part of a highly social species with tight family bonds. It may be that as our culture evolves so that the father role expands into what was previously considered maternal territory, we need to more closely consider allofathers as well as allomothers. These factors that characterize us as an alloparenting species can add up to benefits and greater success for mothers and fathers and children alike. At any rate, I know that’s been the case in our family.

When I was growing up, I had four grandmothers and four grandfathers. Half of them were “step” grandparents, obviously, but I loved the fact that I had all of these grandparents, blissfully unaware in my childhood of the fractures and angst that had led to their presence in my life. Among these step-grandparents was the man who married my mother’s mother. They met over square-dancing, he a handsome architect, she a tiny, fiery single mother who could sew some kick-ass square-dancing outfits.

Through various unanticipated turns in Life’s do-se-do, after marrying my grandmother, this man one day became father to two of my cousins. From their early childhoods, he has been their father, even though for the rest of us cousins, he was our step-grandfather. Along with my grandmother, he committed himself to rearing them and being their parent, and today, in part thanks to his steady, calm presence, they are successful, happily married parents themselves. Without his stabilizing influence, their paths might have been much less straightforward. 

While what my step-grandfather did crossed over from alloparenting to being an actual father, my own children have a step-grandfather of their own who, I think, epitomizes allofathering. When we visit, he has a ready store of caps available for all the cap guns he buys them by the dozen (if you think there are a lot of guns in this post, there are; it’s Texas). He actually builds–builds–go carts and other motorized vehicles to take them buzzing around the large property where he and my mother live and maintains a fleet of bicycles for them to ride. He will drop anything to run a quick errand just because one of the youngest generation expresses a wish for a certain treat or toy. Ask him to make you an ax from a stick and a rock, and he’ll do it masterfully. He attends every volleyball, baseball, or basketball game my niece and nephew have and has simply been a steady and much-loved allofather figure in the lives of all of the youngest generation in our family.

When I think of men like these who enter into lives already structured around complex family interactions and who take on without comment or resentment the care and loving of the children in that family, I wonder if I could be as kind or selfless. Of course, I hope that I could. These little people are, after all, children, and they need love and support and classic grandparental spoiling and an understanding that parenting and parental love come in different forms and different ways of expression. To all the allofathers in my life, I–and my children–are extremely grateful. To all the fathers and allofathers out there, happy Father’s Day. And may I say, I think you all warrant more Google hits. 


***Special thanks to Kate Clancy for her post on allomothers and to Paul Raeburn for his post about the role of fathers today, which certainly drove my thinking about this topic.***

These views are the opinion of the author and do not necessarily either reflect or disagree with those of the DXS editorial team.