Think pink? I’d rather raise a stink

Are some of these possible signs of breast cancer present
in a famous work of art? Image: public domain, US gov
by Liza Gross, contributor
[Ed. note: This article was originally posted on KQED QUEST on October 3, 2012. It is reposted here with kind permission.]
Just a generation ago, October belonged to the colors of fall, when “every green thing loves to die in bright colors,” as Henry Ward Beecher said. (Growing up back East, you read a lot of odes to fall foliage in school.) For years after moving to the Bay Area from Pennsylvania, I felt a twinge of melancholy when October rolled around, knowing the once-demure woodlands would let loose in a fleeting blaze of brash reds and orange-tinged yellows without me.
Now, of course, October belongs to all things pink, as high-profile outfits from the NFL to Ace Hardware set aside 31 days to raise awareness and money for Breast Cancer Awareness Month. (National Breast Cancer Awareness Month was launched in 1985 by CancerCare, a nonprofit cancer support group, and cancer-drug maker AstraZeneca.)
But as women’s health advocate Dr. Susan Love says, awareness of the disease isn’t the issue. “When the NFL is wearing pink gloves, I think you can say we’re aware,” she said last year. “But the awareness isn’t enough.”
Even raising money isn’t enough. You have to ask where that money is going.
It’s a message that gets lost in an ocean of pink-ribbon products (from bagels and teddy bears to vodka and wine glasses), even though critics like the San Francisco-based nonprofit Breast Cancer Action have warned about “pinkwashing” for years, urging people to look behind the feel-good messages to see who’s really benefiting from the commercialization of cancer.
Breast Cancer Action’s Think Before You Pink—Raise a Stink! campaign encourages consumers to think critically about pink products and ask four simple questions to find out what proportion of proceeds go to breast cancer programs and whether the products sold are safe. The group has especially targeted cosmetics companies for marketing pink merchandise even as they sell products with toxic ingredients. (For more information, download the group’s 30-page “toolkit”.)
The group also urges companies to be more transparent and has long called out those it believes use a good cause to increase their bottom line.
Like Eureka, which donated a dollar for every vacuum cleaner sold in its “Clean for the Cure” campaign. Or American Express, which donated a penny per transaction in its “Charge for the Cure.” Both companies bowed out of the pink sweepstakes after Breast Cancer Action asked just how breast cancer patients were benefiting from the campaigns in a 2002 ad in the New York Times.


In October 2000, the San Francisco-based advocacy group 

Breast Cancer Action ran a full page ad in the New York Times 
West Coast Edition with text (not shown) inviting readers to 
participate in its ”Stop Cancer Where It Starts” Campaign. 
The campaign criticized breast cancer awareness campaigns 
for pushing early detection and mammograms 
(without acknowledging their limitations) while ignoring prevention. 
(Image: Courtesy Breast Cancer Action)

Others, like KFC with its 2010 “Buckets for the Cure” campaign, climb on the pink bandwagon to peddle decidedly unhealthy products. Stephen Colbert’s take on the “pink bucket dilemma” shows just how ludicrous cause marketing has become. (Forward to 1:13.)

But even when money goes to breast cancer programs and not corporate coffers, is it going to the right place? Love (and several advocacy groups) has said for years that we need to shift our focus from cures to causes—and prevention.
If we can develop a vaccine for cervical cancer, says Love, why not for breast cancer? Early results of a clinical trial show promising results for a vaccine designed to prevent recurrence of one form of breast cancer. (The data were presented at a meeting and have not yet gone through peer review.)
As I wrote in May, Love’s Research Foundation is looking for volunteers in her online Army of Women to identify potential causes in order to eradicate the disease. (Anyone can sign up.)


In the late 1990s, The Breast Cancer Fund, the American Cancer Society, 

and the Susan G. Komen Breast Cancer Foundation invited American 
artists and writers to submit work about their breast cancer experiences. 
The resulting exhibit (and book)—Art.Rage.Us.—opened in 1998 
at San Francisco’s Main Library. At the time, project coordinator and 
Breast Cancer Action Co-founder Susan Claymon said, 
“Art.Rage.Us. presents deeply moving and beautiful expressions 
from women with breast cancer, along with intensely personal 
statements that provide a window into their hearts and minds.” 
Claymon died of breast cancer in 2000. She was 61.

Prevention is also a primary concern for the Athena Breast Health Network, a partnership of the five University of California medical centers that collects personalized data on breast cancer patients to optimize treatment and ultimately figure out how to stop cancer before it starts. The site also includes a comprehensive list of breast cancer risk factors.

Recent research suggests that the biology behind one of the listed risk factors, dense breast tissue, may be more complicated than previously thought. Earlier studies found that women with dense breasts had a higher risk of developing breast cancer. (And this finding led to the“right to know” legislation that Gov. Brown recently signed, requiring doctors to tell women if their mammograms show they have dense breasts.) But a recent study in the Journal of the National Cancer Institute suggests that women with denser breasts are not more likely to die of breast cancer. The greatest risk was found for women who had the fattiest breast tissue, a condition linked to obesity. This suggests that if you have dense breast tissue, you may be more likely to get cancer—but not die of it. Love’s blog explained the significance of the findings:
The recent study on breast density showed us, yet again, that women who are obese when they are diagnosed with breast cancer are more likely to die of breast cancer than women who are not obese. Doctors need to do more than tell women about their breast density or remind them to get a mammogram. They need to be teaching women the importance of exercising, losing weight (if necessary) and eating a well-balanced diet—both before and after a breast cancer diagnosis. Continue reading

Friday roundup: Nature is beautiful, weird, terrifying, & gross, and vaccines are a social responsibility

Madagascar oxymoron: a new species of giant mouse lemur has been discovered by
a Malagasy-German research team. Credit: B. Randrianambinina.
Women in science
Nature is beautiful. Nature is weird. Nature is terrifying.
  • National Geographic has collected together its best “Photo of the Day” selections from 2012, and this one has stayed with me since I saw it earlier this year. Astonishing. 
  • Otters chase a butterfly. You may know that a group of crows is called a “murder.” But did you know that a group of otters is called a “lodge” or a “bevy”? (Warning: There is music).
  • Meat-eating plants are already the freaks of the plant world–why isn’t photosynthesis good enough for them? But now…here’s one that traps its victims underground.
  • What does a blood clot look like? You may not have realized how beautiful such a deadly little structure could be. This site is packed with similarly beautiful images of the unseen world inside us. 


  • Flowers are beautiful, most of us can agree. But did you know that they’re technically beautiful, as well? 
This is just gross

This is just stupid

Science education (much needed, it would seem)
  • Anatomy of a science fair project, part III. Great information for anyone considering entering a science fair.
  • Changing the nature of science education in the United States: Do we emphasize facts over understanding process and applying critical thinking? Um…yes. We do.
  • iPads for orangs. Or, as one punster on Facebook put it, “Got an old iPad lying around? Maybe there’s an ape for that!” 
  • When you’re a scientist, the mere act of eating pasta can lead to discovery. 
  • Climate vs weather: Do you know the difference? This video explains it oh so very clearly.


Health

  • Vaccinating children is a social responsibility, like driving on streets and not sidewalks, not stabbing people, and giving pedestrians the right of way at street crossings. When you choose not to do it, you endanger others (see “measles,” above). 
  • Can moderate red wine consumption cut breast cancer risk? This study found that red wine consumption altered hormone levels in the blood in a pattern that suggests it might halt the growth of cancer cells. Not anything definitive.
  • We’ve been reading a lot lately about these great ways to trick picky eaters into eating. We know from experience that some picky eaters are untrickable. This scimom tells us what one of the latest studies really means. 

Biology Explainer: The big 4 building blocks of life–carbohydrates, fats, proteins, and nucleic acids

The short version
  • The four basic categories of molecules for building life are carbohydrates, lipids, proteins, and nucleic acids.
  • Carbohydrates serve many purposes, from energy to structure to chemical communication, as monomers or polymers.
  • Lipids, which are hydrophobic, also have different purposes, including energy storage, structure, and signaling.
  • Proteins, made of amino acids in up to four structural levels, are involved in just about every process of life.                                                                                                      
  • The nucleic acids DNA and RNA consist of four nucleotide building blocks, and each has different purposes.
The longer version
Life is so diverse and unwieldy, it may surprise you to learn that we can break it down into four basic categories of molecules. Possibly even more implausible is the fact that two of these categories of large molecules themselves break down into a surprisingly small number of building blocks. The proteins that make up all of the living things on this planet and ensure their appropriate structure and smooth function consist of only 20 different kinds of building blocks. Nucleic acids, specifically DNA, are even more basic: only four different kinds of molecules provide the materials to build the countless different genetic codes that translate into all the different walking, swimming, crawling, oozing, and/or photosynthesizing organisms that populate the third rock from the Sun.

                                                  

Big Molecules with Small Building Blocks

The functional groups, assembled into building blocks on backbones of carbon atoms, can be bonded together to yield large molecules that we classify into four basic categories. These molecules, in many different permutations, are the basis for the diversity that we see among living things. They can consist of thousands of atoms, but only a handful of different kinds of atoms form them. It’s like building apartment buildings using a small selection of different materials: bricks, mortar, iron, glass, and wood. Arranged in different ways, these few materials can yield a huge variety of structures.

We encountered functional groups and the SPHONC in Chapter 3. These components form the four categories of molecules of life. These Big Four biological molecules are carbohydrates, lipids, proteins, and nucleic acids. They can have many roles, from giving an organism structure to being involved in one of the millions of processes of living. Let’s meet each category individually and discover the basic roles of each in the structure and function of life.
Carbohydrates

You have met carbohydrates before, whether you know it or not. We refer to them casually as “sugars,” molecules made of carbon, hydrogen, and oxygen. A sugar molecule has a carbon backbone, usually five or six carbons in the ones we’ll discuss here, but it can be as few as three. Sugar molecules can link together in pairs or in chains or branching “trees,” either for structure or energy storage.

When you look on a nutrition label, you’ll see reference to “sugars.” That term includes carbohydrates that provide energy, which we get from breaking the chemical bonds in a sugar called glucose. The “sugars” on a nutrition label also include those that give structure to a plant, which we call fiber. Both are important nutrients for people.

Sugars serve many purposes. They give crunch to the cell walls of a plant or the exoskeleton of a beetle and chemical energy to the marathon runner. When attached to other molecules, like proteins or fats, they aid in communication between cells. But before we get any further into their uses, let’s talk structure.

The sugars we encounter most in basic biology have their five or six carbons linked together in a ring. There’s no need to dive deep into organic chemistry, but there are a couple of essential things to know to interpret the standard representations of these molecules.

Check out the sugars depicted in the figure. The top-left molecule, glucose, has six carbons, which have been numbered. The sugar to its right is the same glucose, with all but one “C” removed. The other five carbons are still there but are inferred using the conventions of organic chemistry: Anywhere there is a corner, there’s a carbon unless otherwise indicated. It might be a good exercise for you to add in a “C” over each corner so that you gain a good understanding of this convention. You should end up adding in five carbon symbols; the sixth is already given because that is conventionally included when it occurs outside of the ring.

On the left is a glucose with all of its carbons indicated. They’re also numbered, which is important to understand now for information that comes later. On the right is the same molecule, glucose, without the carbons indicated (except for the sixth one). Wherever there is a corner, there is a carbon, unless otherwise indicated (as with the oxygen). On the bottom left is ribose, the sugar found in RNA. The sugar on the bottom right is deoxyribose. Note that at carbon 2 (*), the ribose and deoxyribose differ by a single oxygen.

The lower left sugar in the figure is a ribose. In this depiction, the carbons, except the one outside of the ring, have not been drawn in, and they are not numbered. This is the standard way sugars are presented in texts. Can you tell how many carbons there are in this sugar? Count the corners and don’t forget the one that’s already indicated!

If you said “five,” you are right. Ribose is a pentose (pent = five) and happens to be the sugar present in ribonucleic acid, or RNA. Think to yourself what the sugar might be in deoxyribonucleic acid, or DNA. If you thought, deoxyribose, you’d be right.

The fourth sugar given in the figure is a deoxyribose. In organic chemistry, it’s not enough to know that corners indicate carbons. Each carbon also has a specific number, which becomes important in discussions of nucleic acids. Luckily, we get to keep our carbon counting pretty simple in basic biology. To count carbons, you start with the carbon to the right of the non-carbon corner of the molecule. The deoxyribose or ribose always looks to me like a little cupcake with a cherry on top. The “cherry” is an oxygen. To the right of that oxygen, we start counting carbons, so that corner to the right of the “cherry” is the first carbon. Now, keep counting. Here’s a little test: What is hanging down from carbon 2 of the deoxyribose?

If you said a hydrogen (H), you are right! Now, compare the deoxyribose to the ribose. Do you see the difference in what hangs off of the carbon 2 of each sugar? You’ll see that the carbon 2 of ribose has an –OH, rather than an H. The reason the deoxyribose is called that is because the O on the second carbon of the ribose has been removed, leaving a “deoxyed” ribose. This tiny distinction between the sugars used in DNA and RNA is significant enough in biology that we use it to distinguish the two nucleic acids.

In fact, these subtle differences in sugars mean big differences for many biological molecules. Below, you’ll find a couple of ways that apparently small changes in a sugar molecule can mean big changes in what it does. These little changes make the difference between a delicious sugar cookie and the crunchy exoskeleton of a dung beetle.

Sugar and Fuel

A marathon runner keeps fuel on hand in the form of “carbs,” or sugars. These fuels provide the marathoner’s straining body with the energy it needs to keep the muscles pumping. When we take in sugar like this, it often comes in the form of glucose molecules attached together in a polymer called starch. We are especially equipped to start breaking off individual glucose molecules the minute we start chewing on a starch.

Double X Extra: A monomer is a building block (mono = one) and a polymer is a chain of monomers. With a few dozen monomers or building blocks, we get millions of different polymers. That may sound nutty until you think of the infinity of values that can be built using only the numbers 0 through 9 as building blocks or the intricate programming that is done using only a binary code of zeros and ones in different combinations.

Our bodies then can rapidly take the single molecules, or monomers, into cells and crack open the chemical bonds to transform the energy for use. The bonds of a sugar are packed with chemical energy that we capture to build a different kind of energy-containing molecule that our muscles access easily. Most species rely on this process of capturing energy from sugars and transforming it for specific purposes.

Polysaccharides: Fuel and Form

Plants use the Sun’s energy to make their own glucose, and starch is actually a plant’s way of storing up that sugar. Potatoes, for example, are quite good at packing away tons of glucose molecules and are known to dieticians as a “starchy” vegetable. The glucose molecules in starch are packed fairly closely together. A string of sugar molecules bonded together through dehydration synthesis, as they are in starch, is a polymer called a polysaccharide (poly = many; saccharide = sugar). When the monomers of the polysaccharide are released, as when our bodies break them up, the reaction that releases them is called hydrolysis.

Double X Extra: The specific reaction that hooks one monomer to another in a covalent bond is called dehydration synthesis because in making the bond–synthesizing the larger molecule–a molecule of water is removed (dehydration). The reverse is hydrolysis (hydro = water; lysis = breaking), which breaks the covalent bond by the addition of a molecule of water.

Although plants make their own glucose and animals acquire it by eating the plants, animals can also package away the glucose they eat for later use. Animals, including humans, store glucose in a polysaccharide called glycogen, which is more branched than starch. In us, we build this energy reserve primarily in the liver and access it when our glucose levels drop.

Whether starch or glycogen, the glucose molecules that are stored are bonded together so that all of the molecules are oriented the same way. If you view the sixth carbon of the glucose to be a “carbon flag,” you’ll see in the figure that all of the glucose molecules in starch are oriented with their carbon flags on the upper left.

The orientation of monomers of glucose in polysaccharides can make a big difference in the use of the polymer. The glucoses in the molecule on the top are all oriented “up” and form starch. The glucoses in the molecule on the bottom alternate orientation to form cellulose, which is quite different in its function from starch.

Storing up sugars for fuel and using them as fuel isn’t the end of the uses of sugar. In fact, sugars serve as structural molecules in a huge variety of organisms, including fungi, bacteria, plants, and insects.

The primary structural role of a sugar is as a component of the cell wall, giving the organism support against gravity. In plants, the familiar old glucose molecule serves as one building block of the plant cell wall, but with a catch: The molecules are oriented in an alternating up-down fashion. The resulting structural sugar is called cellulose.

That simple difference in orientation means the difference between a polysaccharide as fuel for us and a polysaccharide as structure. Insects take it step further with the polysaccharide that makes up their exoskeleton, or outer shell. Once again, the building block is glucose, arranged as it is in cellulose, in an alternating conformation. But in insects, each glucose has a little extra added on, a chemical group called an N-acetyl group. This addition of a single functional group alters the use of cellulose and turns it into a structural molecule that gives bugs that special crunchy sound when you accidentally…ahem…step on them.

These variations on the simple theme of a basic carbon-ring-as-building-block occur again and again in biological systems. In addition to serving roles in structure and as fuel, sugars also play a role in function. The attachment of subtly different sugar molecules to a protein or a lipid is one way cells communicate chemically with one another in refined, regulated interactions. It’s as though the cells talk with each other using a specialized, sugar-based vocabulary. Typically, cells display these sugary messages to the outside world, making them available to other cells that can recognize the molecular language.

Lipids: The Fatty Trifecta

Starch makes for good, accessible fuel, something that we immediately attack chemically and break up for quick energy. But fats are energy that we are supposed to bank away for a good long time and break out in times of deprivation. Like sugars, fats serve several purposes, including as a dense source of energy and as a universal structural component of cell membranes everywhere.

Fats: the Good, the Bad, the Neutral

Turn again to a nutrition label, and you’ll see a few references to fats, also known as lipids. (Fats are slightly less confusing that sugars in that they have only two names.) The label may break down fats into categories, including trans fats, saturated fats, unsaturated fats, and cholesterol. You may have learned that trans fats are “bad” and that there is good cholesterol and bad cholesterol, but what does it all mean?

Let’s start with what we mean when we say saturated fat. The question is, saturated with what? There is a specific kind of dietary fat call the triglyceride. As its name implies, it has a structural motif in which something is repeated three times. That something is a chain of carbons and hydrogens, hanging off in triplicate from a head made of glycerol, as the figure shows.  Those three carbon-hydrogen chains, or fatty acids, are the “tri” in a triglyceride. Chains like this can be many carbons long.

Double X Extra: We call a fatty acid a fatty acid because it’s got a carboxylic acid attached to a fatty tail. A triglyceride consists of three of these fatty acids attached to a molecule called glycerol. Our dietary fat primarily consists of these triglycerides.

Triglycerides come in several forms. You may recall that carbon can form several different kinds of bonds, including single bonds, as with hydrogen, and double bonds, as with itself. A chain of carbon and hydrogens can have every single available carbon bond taken by a hydrogen in single covalent bond. This scenario of hydrogen saturation yields a saturated fat. The fat is saturated to its fullest with every covalent bond taken by hydrogens single bonded to the carbons.

Saturated fats have predictable characteristics. They lie flat easily and stick to each other, meaning that at room temperature, they form a dense solid. You will realize this if you find a little bit of fat on you to pinch. Does it feel pretty solid? That’s because animal fat is saturated fat. The fat on a steak is also solid at room temperature, and in fact, it takes a pretty high heat to loosen it up enough to become liquid. Animals are not the only organisms that produce saturated fat–avocados and coconuts also are known for their saturated fat content.

The top graphic above depicts a triglyceride with the glycerol, acid, and three hydrocarbon tails. The tails of this saturated fat, with every possible hydrogen space occupied, lie comparatively flat on one another, and this kind of fat is solid at room temperature. The fat on the bottom, however, is unsaturated, with bends or kinks wherever two carbons have double bonded, booting a couple of hydrogens and making this fat unsaturated, or lacking some hydrogens. Because of the space between the bumps, this fat is probably not solid at room temperature, but liquid.

You can probably now guess what an unsaturated fat is–one that has one or more hydrogens missing. Instead of single bonding with hydrogens at every available space, two or more carbons in an unsaturated fat chain will form a double bond with carbon, leaving no space for a hydrogen. Because some carbons in the chain share two pairs of electrons, they physically draw closer to one another than they do in a single bond. This tighter bonding result in a “kink” in the fatty acid chain.

In a fat with these kinks, the three fatty acids don’t lie as densely packed with each other as they do in a saturated fat. The kinks leave spaces between them. Thus, unsaturated fats are less dense than saturated fats and often will be liquid at room temperature. A good example of a liquid unsaturated fat at room temperature is canola oil.

A few decades ago, food scientists discovered that unsaturated fats could be resaturated or hydrogenated to behave more like saturated fats and have a longer shelf life. The process of hydrogenation–adding in hydrogens–yields trans fat. This kind of processed fat is now frowned upon and is being removed from many foods because of its associations with adverse health effects. If you check a food label and it lists among the ingredients “partially hydrogenated” oils, that can mean that the food contains trans fat.

Double X Extra: A triglyceride can have up to three different fatty acids attached to it. Canola oil, for example, consists primarily of oleic acid, linoleic acid, and linolenic acid, all of which are unsaturated fatty acids with 18 carbons in their chains.

Why do we take in fat anyway? Fat is a necessary nutrient for everything from our nervous systems to our circulatory health. It also, under appropriate conditions, is an excellent way to store up densely packaged energy for the times when stores are running low. We really can’t live very well without it.

Phospholipids: An Abundant Fat

You may have heard that oil and water don’t mix, and indeed, it is something you can observe for yourself. Drop a pat of butter–pure saturated fat–into a bowl of water and watch it just sit there. Even if you try mixing it with a spoon, it will just sit there. Now, drop a spoon of salt into the water and stir it a bit. The salt seems to vanish. You’ve just illustrated the difference between a water-fearing (hydrophobic) and a water-loving (hydrophilic) substance.

Generally speaking, compounds that have an unequal sharing of electrons (like ions or anything with a covalent bond between oxygen and hydrogen or nitrogen and hydrogen) will be hydrophilic. The reason is that a charge or an unequal electron sharing gives the molecule polarity that allows it to interact with water through hydrogen bonds. A fat, however, consists largely of hydrogen and carbon in those long chains. Carbon and hydrogen have roughly equivalent electronegativities, and their electron-sharing relationship is relatively nonpolar. Fat, lacking in polarity, doesn’t interact with water. As the butter demonstrated, it just sits there.

There is one exception to that little maxim about fat and water, and that exception is the phospholipid. This lipid has a special structure that makes it just right for the job it does: forming the membranes of cells. A phospholipid consists of a polar phosphate head–P and O don’t share equally–and a couple of nonpolar hydrocarbon tails, as the figure shows. If you look at the figure, you’ll see that one of the two tails has a little kick in it, thanks to a double bond between the two carbons there.

Phospholipids form a double layer and are the major structural components of cell membranes. Their bend, or kick, in one of the hydrocarbon tails helps ensure fluidity of the cell membrane. The molecules are bipolar, with hydrophilic heads for interacting with the internal and external watery environments of the cell and hydrophobic tails that help cell membranes behave as general security guards.

The kick and the bipolar (hydrophobic and hydrophilic) nature of the phospholipid make it the perfect molecule for building a cell membrane. A cell needs a watery outside to survive. It also needs a watery inside to survive. Thus, it must face the inside and outside worlds with something that interacts well with water. But it also must protect itself against unwanted intruders, providing a barrier that keeps unwanted things out and keeps necessary molecules in.

Phospholipids achieve it all. They assemble into a double layer around a cell but orient to allow interaction with the watery external and internal environments. On the layer facing the inside of the cell, the phospholipids orient their polar, hydrophilic heads to the watery inner environment and their tails away from it. On the layer to the outside of the cell, they do the same.
As the figure shows, the result is a double layer of phospholipids with each layer facing a polar, hydrophilic head to the watery environments. The tails of each layer face one another. They form a hydrophobic, fatty moat around a cell that serves as a general gatekeeper, much in the way that your skin does for you. Charged particles cannot simply slip across this fatty moat because they can’t interact with it. And to keep the fat fluid, one tail of each phospholipid has that little kick, giving the cell membrane a fluid, liquidy flow and keeping it from being solid and unforgiving at temperatures in which cells thrive.

Steroids: Here to Pump You Up?

Our final molecule in the lipid fatty trifecta is cholesterol. As you may have heard, there are a few different kinds of cholesterol, some of which we consider to be “good” and some of which is “bad.” The good cholesterol, high-density lipoprotein, or HDL, in part helps us out because it removes the bad cholesterol, low-density lipoprotein or LDL, from our blood. The presence of LDL is associated with inflammation of the lining of the blood vessels, which can lead to a variety of health problems.

But cholesterol has some other reasons for existing. One of its roles is in the maintenance of cell membrane fluidity. Cholesterol is inserted throughout the lipid bilayer and serves as a block to the fatty tails that might otherwise stick together and become a bit too solid.

Cholesterol’s other starring role as a lipid is as the starting molecule for a class of hormones we called steroids or steroid hormones. With a few snips here and additions there, cholesterol can be changed into the steroid hormones progesterone, testosterone, or estrogen. These molecules look quite similar, but they play very different roles in organisms. Testosterone, for example, generally masculinizes vertebrates (animals with backbones), while progesterone and estrogen play a role in regulating the ovulatory cycle.

Double X Extra: A hormone is a blood-borne signaling molecule. It can be lipid based, like testosterone, or short protein, like insulin.

Proteins

As you progress through learning biology, one thing will become more and more clear: Most cells function primarily as protein factories. It may surprise you to learn that proteins, which we often talk about in terms of food intake, are the fundamental molecule of many of life’s processes. Enzymes, for example, form a single broad category of proteins, but there are millions of them, each one governing a small step in the molecular pathways that are required for living.

Levels of Structure

Amino acids are the building blocks of proteins. A few amino acids strung together is called a peptide, while many many peptides linked together form a polypeptide. When many amino acids strung together interact with each other to form a properly folded molecule, we call that molecule a protein.

For a string of amino acids to ultimately fold up into an active protein, they must first be assembled in the correct order. The code for their assembly lies in the DNA, but once that code has been read and the amino acid chain built, we call that simple, unfolded chain the primary structure of the protein.

This chain can consist of hundreds of amino acids that interact all along the sequence. Some amino acids are hydrophobic and some are hydrophilic. In this context, like interacts best with like, so the hydrophobic amino acids will interact with one another, and the hydrophilic amino acids will interact together. As these contacts occur along the string of molecules, different conformations will arise in different parts of the chain. We call these different conformations along the amino acid chain the protein’s secondary structure.

Once those interactions have occurred, the protein can fold into its final, or tertiary structure and be ready to serve as an active participant in cellular processes. To achieve the tertiary structure, the amino acid chain’s secondary interactions must usually be ongoing, and the pH, temperature, and salt balance must be just right to facilitate the folding. This tertiary folding takes place through interactions of the secondary structures along the different parts of the amino acid chain.

The final product is a properly folded protein. If we could see it with the naked eye, it might look a lot like a wadded up string of pearls, but that “wadded up” look is misleading. Protein folding is a carefully regulated process that is determined at its core by the amino acids in the chain: their hydrophobicity and hydrophilicity and how they interact together.

In many instances, however, a complete protein consists of more than one amino acid chain, and the complete protein has two or more interacting strings of amino acids. A good example is hemoglobin in red blood cells. Its job is to grab oxygen and deliver it to the body’s tissues. A complete hemoglobin protein consists of four separate amino acid chains all properly folded into their tertiary structures and interacting as a single unit. In cases like this involving two or more interacting amino acid chains, we say that the final protein has a quaternary structure. Some proteins can consist of as many as a dozen interacting chains, behaving as a single protein unit.

A Plethora of Purposes

What does a protein do? Let us count the ways. Really, that’s almost impossible because proteins do just about everything. Some of them tag things. Some of them destroy things. Some of them protect. Some mark cells as “self.” Some serve as structural materials, while others are highways or motors. They aid in communication, they operate as signaling molecules, they transfer molecules and cut them up, they interact with each other in complex, interrelated pathways to build things up and break things down. They regulate genes and package DNA, and they regulate and package each other.

As described above, proteins are the final folded arrangement of a string of amino acids. One way we obtain these building blocks for the millions of proteins our bodies make is through our diet. You may hear about foods that are high in protein or people eating high-protein diets to build muscle. When we take in those proteins, we can break them apart and use the amino acids that make them up to build proteins of our own.

Nucleic Acids

How does a cell know which proteins to make? It has a code for building them, one that is especially guarded in a cellular vault in our cells called the nucleus. This code is deoxyribonucleic acid, or DNA. The cell makes a copy of this code and send it out to specialized structures that read it and build proteins based on what they read. As with any code, a typo–a mutation–can result in a message that doesn’t make as much sense. When the code gets changed, sometimes, the protein that the cell builds using that code will be changed, too.

Biohazard!The names associated with nucleic acids can be confusing because they all start with nucle-. It may seem obvious or easy now, but a brain freeze on a test could mix you up. You need to fix in your mind that the shorter term (10 letters, four syllables), nucleotide, refers to the smaller molecule, the three-part building block. The longer term (12 characters, including the space, and five syllables), nucleic acid, which is inherent in the names DNA and RNA, designates the big, long molecule.

DNA vs. RNA: A Matter of Structure

DNA and its nucleic acid cousin, ribonucleic acid, or RNA, are both made of the same kinds of building blocks. These building blocks are called nucleotides. Each nucleotide consists of three parts: a sugar (ribose for RNA and deoxyribose for DNA), a phosphate, and a nitrogenous base. In DNA, every nucleotide has identical sugars and phosphates, and in RNA, the sugar and phosphate are also the same for every nucleotide.

So what’s different? The nitrogenous bases. DNA has a set of four to use as its coding alphabet. These are the purines, adenine and guanine, and the pyrimidines, thymine and cytosine. The nucleotides are abbreviated by their initial letters as A, G, T, and C. From variations in the arrangement and number of these four molecules, all of the diversity of life arises. Just four different types of the nucleotide building blocks, and we have you, bacteria, wombats, and blue whales.

RNA is also basic at its core, consisting of only four different nucleotides. In fact, it uses three of the same nitrogenous bases as DNA–A, G, and C–but it substitutes a base called uracil (U) where DNA uses thymine. Uracil is a pyrimidine.

DNA vs. RNA: Function Wars

An interesting thing about the nitrogenous bases of the nucleotides is that they pair with each other, using hydrogen bonds, in a predictable way. An adenine will almost always bond with a thymine in DNA or a uracil in RNA, and cytosine and guanine will almost always bond with each other. This pairing capacity allows the cell to use a sequence of DNA and build either a new DNA sequence, using the old one as a template, or build an RNA sequence to make a copy of the DNA.

These two different uses of A-T/U and C-G base pairing serve two different purposes. DNA is copied into DNA usually when a cell is preparing to divide and needs two complete sets of DNA for the new cells. DNA is copied into RNA when the cell needs to send the code out of the vault so proteins can be built. The DNA stays safely where it belongs.

RNA is really a nucleic acid jack-of-all-trades. It not only serves as the copy of the DNA but also is the main component of the two types of cellular workers that read that copy and build proteins from it. At one point in this process, the three types of RNA come together in protein assembly to make sure the job is done right.


 By Emily Willingham, DXS managing editor 
This material originally appeared in similar form in Emily Willingham’s Complete Idiot’s Guide to College Biology

Double Xpression: Meghan Groome

Meghan Groome, PhD, Director of K12 Education and Science & the City, New York Academy of Sciences
[Ed. note: Double X Science has started a new series: Double Xpression: Profiles of Women into Science. The focus of these profiles is how women in science express themselves in ways that aren’t necessarily scientific, how their ways of expression inform their scientific activities and vice-versa, and the reactions they encounter.]
Today’s profile is an interview with Meghan Groome, PhD, New York Academy of SciencesDirector of K12 Education and Science & The City, who answered our questions via email with DXS Biology Editor Jeanne Garbarino.

DXS: First, can you give me a quick overview of what your scientific background is and your current connection to science?

MG: I was a bio major since age two. Growing up (and still today) I had a deep love of all things gross, icky, creepy, and crawly and a deep dislike of anything math related. My parents didn’t really know what to do with me, so a theme to my scientific background is that although I was a straight-A student in my bio classes, no one had any idea that I should be doing enrichment programs or making an effort to learn math. I figured that by being a great bio major, I would become a great scientist. So I was an excellent consumer of scientific knowledge but only realized late in life that I needed to be a producer to actually become a scientist.

Being a straight-A student doesn’t actually get you a job when you graduate from a small liberal arts college with a degree in biology and theater, and out of desperation, I took a job teaching. While I wasn’t a good scientist, I turned out to be an excellent teacher and loved the creativity, energy, and never-ending questions that go along with being a science teacher. If you teach from the perspective that science is an endless quest for knowledge, you’ll never get bored taking kids on that journey.

While my background is in biology, my graduate degree is in science education, and I study gender dynamics and student questioning the middle-school classrooms. I currently work for the New York Academy of Sciences as the Director of K12 Education and public programs and spend most of my day convincing scientists that education outreach is not only part of their jobs but a lot of fun.

DXS: What ways do you express yourself creatively that may not have a single thing to do with science?

MG: I’m also a photographer and spend a lot of time wandering around neighborhoods in Brooklyn with a special love of decaying buildings and empty lots. I love how nature conquers things that we humans consider to be permanent – like how we have to constantly beat back the invading hordes of plants and animals even in one of the most man-made environments in the world.

I was also a theater major, so (I) have a strong background in costume design and stage directing. I hate acting but love dance. If I had any talent I would have become a musical theater star but unfortunately enthusiasm and determination can only get you so far.

DXS: Do you find that your scientific background informs your creativity, even though what you do may not specifically be scientific?

MG: I find great joy in seeing how nature conquers human engineering. When I learned about Lynn Margulis’ Gaia hypothesis, I began seeing it everywhere and I think I love photography because I’m documenting the Earth fighting back.

Most of my creative energy comes from working with kids and listening to the wonderful way in which they think about the natural world. Adults can be so rigid in their thinking and are often afraid to say ideas that are out of the mainstream thinking. The older a kid gets, the more we expect them to conform to the adult way of thinking. Middle-school kids are old enough to express their wacky ideas, and young enough to not recognize that their ideas are considered “wrong.”

DXS: Have you encountered situations in which your expression of yourself outside the bounds of science has led to people viewing you differently–either more positively or more negatively?

MG: People tell me all the time “You’re not what we expected” and I’m not really sure how to respond.

In the science education world, my research is informed by my experiences teaching in a very poor district and from a social justice perspective. It’s a rather controversial theoretical framework because it says, “I have an agenda to use my research to bring about equity in an unequal world.” From a research perspective, it means you need to be explicit in your point of view and your biases and have much greater validity and reliability to show that your research is solid. My work is very passion driven so I’ve had to learn when it’s appropriate to pull out my soap box and go full-out social justice to them.

This is changing, but for a long time I kept my personality under wraps in a professional setting. It’s only now — with 10 years professional experience, great organizations on my resume, and a PhD — that I can be clever, confront those I disagree with, and even smile. Anyone who’s ever had a beer with me knows that I’m a goofball and will do just about anything to make someone laugh. I’m a science person, a theater person, a teacher, researcher, policy maker, consultant, and have seen a lot of exquisitely bad and good stuff in my life and so I am frequently the voice of an outsider even though I look and sound like a total insider. That can really freak people out especially if they’ve only read my bio or seen me in my most professional mode.
DXS: Have you found that your non-science expression of creativity/activity/etc. has in any way informed your understanding of science or how you may talk about it or present it to others?

MG: I approach teaching science from a fairly theatrical perspective. In my class we dance, sing, laugh, talk about the real world. I’ve never used the textbook, and I’m very insistent that everything be in the first person when writing or speaking about science. I much prefer teaching regular classes — not honors or AP — and can’t stand kids who remind me of myself in high school.

I approach scientists in the same way and try to make them comfortable admitting that their more than a brain on a stick. I’ve found one of the biggest fears of young scientists is that their PI will find out that they’re interested in something more than life in the lab so I always try to work within the existing power structure and make sure the PIs and Deans indicate to them that working with the (New York) Academy (of Sciences) is okay.

DXS: How comfortable are you expressing your femininity and in what ways? How does this expression influence people’s perception of you in, say, a scientifically oriented context?

MG: This question confounds the heck out of me. I am still such a tomboy and have always chosen to present myself as a somewhat genderless individual. I’ve always considered myself “smart not pretty” because I can control how smart I am but not how pretty. A few years ago, my sisters pulled me aside and told me I needed to stop dressing like such a slob. They started buying me pretty, fashionable clothes and insisting that I wear skirts above the knee and get a real hair cut.

Since I started working at the Academy, I have a very public facing role and have grown to accept that I should look nice. This goes along with slowly feeling comfortable letting my personality out in professional settings but I still consider myself a tomboy and consider my outward appearance to be a costume designed to do a job.

So I guess the answer is, femininity, what femininity?

DXS: Do you think that the combination of your non-science creativity and scientific-related activity shifts people’s perspectives or ideas about what a scientist or science communicator is? If you’re aware of such an influence, in what way, if any, do you use it to (for example) reach a different corner of your audience or present science in a different sort of way?

MG: I think very few people are brains on a stick but that being a scientist often requires us to pretend we have no life outside the lab. I’ve now worked with hundreds of young scientists who spend time working with kids and I’m so pleased to see how quickly they shift from lab geek to real person when talking with a 4th grader. I want scientists to be evangelicals for science, and I want that to include the fact that scientists are real, fallible, wacky, wonderful people too.

DXS: If you had something you could say to the younger you about the role of expression and creativity in your chosen career path, what would you say?

MG: I was always encouraged to be an individual and be myself. I credit my parents with allowing me to pursue my passion and not try to box me in to one identity. It’s never been easy to forge my own path, and I dedicate a lot of myself to my work.

My advice to my younger self would be to slow down a bit, know that you don’t have to get 100% on everything, and know that the problems of the world don’t have to be solved right now.

And perhaps to learn how to be a bit more like a girl. It’s incredibly powerful to see yourself as smart and pretty.


———————————————————————
Meghan Groome is the Director of K12 Education and Science & the City at the New York Academy of Sciences, an organization with the mission to advance scientific research and knowledge, support scientific literacy, and promote the resolution of society’s global challenges through science-based solutions. After graduating from Colorado College in Biology and Theatre, she desperately needed a job and took one as a substitute teacher at a middle school in Ridgewood, NJ. She discovered that she had a knack for making science interesting and enjoyable, mostly through bringing in gross things, lighting things on fire (but always in a safe manner), and having a large library of the world’s best science writing and science fiction. After teaching in both Ridgewood and Paterson, NJ, she completed her PhD at Teachers College (TC) Columbia University with a focus on student question-asking in the classroom. While at TC, she was a founding member of an international education consulting firm and worked on projects from Kenya to Jordan with a focus on designing new schools and school systems in the developing world. 

After graduating, Dr. Groome became a Senior Policy Analyst at the National Governors Association on Governor Janet Napolitano’s Innovation America Initiative. Prior to her work at the Academy, Dr. Groome worked at the American Museum of Natural History and authored the policy roadmap for the Empire State STEM Education Network and taught urban biodiversity in the Education Department. At the Academy, she is responsible for the Afterschool STEM Mentoring program, which places graduate students and postdocs in the City’s afterschool programs, and the Science Teacher program, where she designs field trips and content talks to the City’s STEM teachers. Connect with her on Twitter, and read her NYAS blog!

Shmeat and Potatoes: The dinner of the future?

By Jeanne Garbarino, Biology Editor


(Source)

“Meatloaf, beatloaf, double s[h]meatloaf…”  Was little Randy on to something?
Food engineering has been on an incredibly strange journey, but there is none stranger (at least to me) than the concept of in vitro meat.  Colloquially referred to as “shmeat,” a term born out of mashing up the phrase “sheets of meat,” in vitro meat may be available in our grocer’s refrigerator section in just a few years.  But how exactly is shmeat produced and how does it compare to, you know, that which is derived from actual animals?  Here, I hope to shed some light on this petri dish to kitchen dish phenomenon.

The shmeaty deets

When it comes to producing shmeat, scientists are taking advantage the extensive cell culture technologies that have been developed over the course of the 20th century (for a brief history of these developments, check this out).  Because of what we have learned, we can easily determine the conditions under which cells grow best, and swiftly turn a few cells into a few million cells.  However, things can get a little tricky when growing complex, three-dimensional tissues like steak or boneless chicken breast.

(Source)

For instance, lets consider a living, breathing cow.  Most people seem to enjoy fancy cuts like beef tenderloin, which, before the butcher gets to it, is located near the back of the cow.  In order for that meat to be nice and juicy, it needs to have enough nutrients and oxygen to grow.  In addition, muscles (in this case, the tenderloin) need stimulation, and in the cow (and us too!) that is achieved by flexing and relaxing.

If shmeat is to be successfully engineered, scientists need to replicate all of the complexities that occur during the normal life of an actual animal.  While the technology for making shmeat is still being optimized, the components involved in this meat-making scheme successfully address many of the major issues with growing whole tissues in a laboratory. 

The first step in culturing meat is to get some muscle cells from an animal.  Because cells divide as they grow, a single animal could, in theory, provide enough cells to make meat for many, many people – and for a long period of time.  However, the major hurdle is creating a three-dimensional tissue, you know, something that would actually resemble a steak. 

Normally, cells will grow in a single layer on a petri dish, with a thickness that can only be measured by using a microscope.  Obviously that serving size would not be very satisfying.  In order to create that delicious three-dimensional look, feel, and taste, and be substantial enough to count as a meal, scientists have developed a way to grow the muscle cells on scaffold made of natural and edible material.  As sheets of cells grow on these scaffolds, they are laid on top of each other to bulk up the shmeat (hence “sheets of meat”).  But, in order for the cells on the inside of this 3D mass to grow as well as the cells on the outside, there has to be an sufficient way to deliver nutrients and oxygen to all cells. 

Back to the tenderloin – when it is still in the cow, the cells that make up this piece of meat are in close contact to a series of veins, arteries, and capillaries.  Termed vasculature, this system allows for the cells to obtain nutrients and oxygen, while simultaneously allowing cells to dump any waste into the blood stream.  There are some suggestionsthat the shmeat can be vascularized (grown such that a network of blood vessels are formed); however, the nutrient delivery system most widely used at this point is something called a bioreactor

A Bioreactor (Source)

This contraption is designed to support biologically active materials and how it works is actually quite cool.  The cells are placed in the cylindrical bioreactor, which spins at a rate that balances multiple physical forces, which keep the entire cell mass fully submerged in liquid growth medium at all times.  This growth medium is constantly refreshed, ensuring that the cells are always supplied with a maximum level of growth factors.  In essence, the shmeat is kept in a perpetual free fall state while it grows.         

But there is one last piece to the meat-growing puzzle, and that is regular exercise.  If we look at meat on a purely biological level, we would see that it is just a series of cells arranged to form muscle tissue.  Without regular stimulation, muscles will waste away (atrophy).  Clearly, wasting shmeat would not be very efficient (or tasty).  So, shmeat engineers have reduced the basic biological process involved with muscle stimulationto the most basic components – mechanical contraction and electrical stimulation.  Though mechanical contraction (the controlled stretching and relaxing of the growing muscle fibers) has been shown to be effective, it is not exactly feasible on a large scale.  Electrical stimulation – the process of administering regular electrical pulses to the cells – is actually more effective than mechanical contraction and can be widely performed.  Therefore, it seems to be a more viable option for shmeat production.    

Why in the world would we grow meat in a petri dish?

Grill it, braise it, broil it, roast it – as long as it tastes good, most people don’t usually question the origins of their meat.  Doing so could easily make one think twice about what they are eating.  Traditionally speaking, every slab of meat begins with a live animal – cow, pig, lamb, poultry (yes, despite what my grandmother says, this vegetarian does consider chicken to be meat) – with each animal only being able to provide a finite number of servings.  While shmeat does ultimately begin with a live animal, only a few muscle, fat, and other cells are required.

Given the theoretical amount that can be produced with just a few cells, the efficiency of traditional meat-generating farms and slaughterhouses is becoming increasingly scrutinized.  There are obvious costs – economic, agricultural, environmental – that are associated with livestock, and it has been proposed(article behind dumb pay wall, grrrr….) that shmeat engineering would substantially cut these costs.  For instance, it has been projected that shmeat production could use up to 45% less energy, compared to traditional farming methods.  Furthermore, relative to the current meat production process, culturing shmeat would use 99% less land, 82-96% less water, and would significantly reduce the amount of greenhouse gasesproduced. 

The impact of shmeat compared to tradtional agricultural processes.
(Environ. Sci. Technol., 2011, 45 (14), pp 6117–6123)

But the potential benefits of making the shift toward shmeat (as opposed to meat) doesn’t stop with its positive environmental impact.  From a nutritional standpoint, it is possible to produce shmeat in a way that would significantly reduce the amount of saturated fat it contains.  Additionally, there are technologies that would allow shmeat to be enriched with heart-healthy omega-3 fats, as well as other types of polyunsaturated fats.  In essence, shmeat could possibly help combat our growing obesity epidemic, as well as the associated illnesses such as diabetes and heart disease.  That’s *if* it can be produced in a way that is both affordable and widely available (more on that in a bit). 

In terms of health, switching to shmeat would improve more than our waistlines.  Because shmeat would be produced in a sterile environment, the incidence of E. coli and other bacterial and/or viral contamination would be next to nothing relative to current meat production methods.  On a more superficial level, shmeat technology would allow for the introduction of some very exotic meats into the mainstream.  Because this technology does not require an animal to be slaughtered (another good reason that supports shmeat productions) and it is not limited to the more common sources of meat, it would be entirely possible to make things like panda sausage and crocodile burgers.  But, of course, getting people to actually eat meat grown in a test-tube is another issue…

The limitations of shmeat

Now that I’ve just spent a few paragraphs singing shmeat’s praises, it is probably best that I fill you in on some of the major roadblocks associated with shmeat production.  According to scientists, there are two main concerns: the first is that shmeat production will not be subjected to the normal regulatory (homeostatic) mechanisms that naturally occur in animals (scientists are having trouble figuring out how to replicate these processes); and the second is that shmeat engineering technology has not evolved enough so that it can occur on an industrial scale.  Because of these issues and others, the cost of culturing shmeat in the laboratory is very high.  But, there has always got to be a starting point.  As the technologies advance, the cost-production ratios will decrease and, eventually, shmeat will find its way to the dining table – our dining table. 

Interestingly, the folks at PETA are all for shmeat and offered a one million dollar prize to the first group who could come up with the technology to make shmeat commercially available by June, 2012.  Obviously, that did not happen, and the contest has been extended to January 2013 (this offer has been on the table since 2008).  But, the first tastes test for shmeat hamburgers is going down in October of this year. 

At the moment, the largest piece of shmeat to be created is about the size of a contact lens and my guess is that, barring unforeseen technological breakthroughs, this reward will go unclaimed for a long, long time.  But, many a miracle has been known to happen in about nine months time…   

A few final thoughts on shmeat

With the world population expected to hit 9 billion by 2050, which will be accompanied by a major increase in the need for the amount of food produced, perhaps shmeat technology will become one of the critical innovations required for our collective survival on this planet.  But, there is just one thing: the ick factor.  It is a little hard for me to weigh in on this issue because almost all meat seems gross to me (unless it is a pulled pork sandwich, lovingly made by my long-time pal and professional chef – Julie Hall).  While most of my peers have less of an aversion to meat, I can’t imagine that they would eagerly line up for a whopping serving of lab-grown shmeat. 

But, say scientists finally figure it out and shmeat production is scaled up for mass consumption – how will the agricultural sector react?  As of right now, the agricultural industry in the USA is worth over $70 billion, with a yearly beef consumptiontipping over the 26 million pound mark (of which 8.7% is exported).  Shmeat probably has definitely gotten the attention of cattle farmers (and other meat farmers/production companies) and, given the size of this industry, I wonder how much muscle will be used to block shmeat from becoming a household phenomenon.

Over all, I think that shmeat is a revolutionary idea as it could have a significant impact on humanity.  However, there are many complex questions that need to be both asked andanswered.  As excited as I am at the thought of not having to kill an animal to eat a steak, I still remain skeptical (though this sentiment may not have been fully present for the majority of this post).  Will shmeat be produced in such a way that it will be indistinguishable from traditional meat?  Additionally, will shmeat live up to all of these expectations?  I am going to try and keep a positive outlook with this one.  Perhaps the next time I actually step foot in a kitchen to prepare a meal, I’ll follow Randy’s lead by making a shmeatloaf, served alongside a heaping side of mashed potatoes.  Now that’s some pretty cool kitchen science.

And now, an oldie but a goodie (let it be known that I am in love with Stephen Colbert):

The Colbert Report Mon – Thurs 11:30pm / 10:30c
World of Nahlej – Shmeat
www.colbertnation.com
Colbert Report Full Episodes Political Humor & Satire Blog Video Archive

For more information:
The Brian Lehrer Show, Shmeat: It’s whats for dinner

Friday Roundup: Obese babies, cancer vaccine, human hair fonts, and the grandeur of a dead tree

It’s Friday! Links to information for you to share with family, friends, children, and total strangers:

  • Babies on obesity path? Well, it’s questionable. Study says that babies who hit two growth markers before age 2 have increased risk of obesity. But only 12% of the 45,000 infants in the study who did hit the mark were obese by age 5. Two of my children have always been off the charts for growth. They are both quite slender. Researchers writing in an accompanying editorial expressed concern that using the “red flags” identified in the study may cause more harm than good.
  • Amber-encased mite A teeny mite captured along with its spider host when amber flooded them both 50 million years ago. Video below:



  • Logical fallacies: Do you like to argue? Are you invested in being right? Check yourself against these logical fallacies before you wreck yourself, online or in real life. 
  • There is grandeur, really: Want your children to see, investigate, and experience the world? Take them outside. Often. Go with them. Explore the tiniest and most intricate mysteries of nature together. A dead tree is a place to start. A beautiful post from Emily Finke.

  • Hairy typeface: Wanna gross out your kids? Or anyone, really? Show them this font made out of LEG HAIR (above). Artist Mayuko Kanazawa created the font as part of an art class assignment. Her work has already been featured in a Japanese ad campaign
  • Dogs evolved as our best friends: From NPR, how that large hairy carnivore living in your house came to be there.
  • Vax for breast/ovarian cancer? A small study, a vaccine that triggers an attack on tumor cells. Some women’s cancers stopped progressing, and one woman’s cancer vanished completely. These are patients for whom other therapies had already failed.
  • New BCPs tied to blood clots, again: The common culprit among these hormonal birth control methods is drospirenone. Hormonal birth control has always been known for increasing blood clot risks, but these versions seem to increase it even more. 
  • Three more elements added to periodic table: For chemistry and categorization junkies like my 10 year old, this is big, big news. You can visit the new elements–darmstadtium, roentgenium, and copernicium–at this interactive periodic table of elements.
  • Laughing kills pain: From Scicurious–Like a good long run, laughter may release the “natural high” chemicals known as endorphins. So, laugh loud and often.

[Photo credit: Wikimedia Commons]