Anorexia nervosa, neurobiology, and family-based treatment

Via Wikimedia Commons
Photo credit: Sandra Mann
By Harriet Brown, DXS contributor

Back in 1978, psychoanalyst Hilde Bruch published the first popular book on anorexia nervosa. In The Golden Cage, she described anorexia as a psychological illness caused by environmental factors: sexual abuse, over-controlling parents, fears about growing up, and/or other psychodynamic factors. Bruch believed young patients needed to be separated from their families (a concept that became known as a “parentectomy”) so therapists could help them work through the root issues underlying the illness. Then, and only then, patients would choose to resume eating. If they were still alive.

Bruch’s observations dictated eating-disorders treatments for decades, treatments that led to spectacularly ineffective results. Only about 35% of people with anorexia recovered; another 20% died, of starvation or suicide; and the rest lived with some level of chronic illness for the rest of their lives.

Not a great track record, overall, and especially devastating for women, who suffer from anorexia at a rate of 10 times that of men. Luckily, we know a lot more about anorexia and other eating disorders now than we did in 1978.

“It’s Not About the Food”

In Bruch’s day, anorexia wasn’t the only illness attributed to faulty parenting and/or trauma. Therapists saw depression, anxiety, schizophrenia, eating disorders, and homosexuality (long considered a psychiatric “illness”) as ailments of the mind alone. Thanks to the rising field of behavioral neuroscience, we’ve begun to untangle the ways brain circuitry, neural architecture, and other biological processes contribute to these disorders. Most experts now agree that depression and anxiety can be caused by, say, neurotransmitter imbalances as much as unresolved emotional conflicts, and treat them accordingly. But the field of eating-disorders treatment has been slow to jump on the neurobiology bandwagon. When my daughter was diagnosed with anorexia in 2005, for instance, we were told to find her a therapist and try to get our daughter to eat “without being the food police,” because, as one therapist informed us, “It’s not about the food.”

Actually, it is about the food. Especially when you’re starving.

Ancel Keys’ 1950 Semi-Starvation Study tracked the effects of starvation and subsequent re-feeding on 36 healthy young men, all conscientious objectors who volunteered for the experiment. Keys was drawn to the subject during World War II, when millions in war-torn Europe – especially those in concentration camps – starved for years. One of Keys’ most interesting findings was that starvation itself, followed by re-feeding after a period of prolonged starvation, produced both physical and psychological symptoms, including depression, preoccupation with weight and body image, anxiety, and obsessions with food, eating, and cooking—all symptoms we now associate with anorexia. Re-feeding the volunteers eventuallyreversed most of the symptoms. However, this approach proved to be difficult on a psychological level, and in some ways more difficult than the starvation period. These results were a clear illustration of just how profound the effects of months of starvation were on the body and mind.

Alas, Keys’ findings were pretty much ignored by the field of eating-disorders treatment for 40-some years, until new technologies like functional magnetic resonance imaging (fMRI) and research gave new context to his work. We now know there is no single root cause for eating disorders. They’re what researchers call multi-factorial, triggered by a perfect storm of factors that probably differs for each person who develops an eating disorder. “Personality characteristics, the environment you live in, your genetic makeup—it’s like a cake recipe,” says Daniel le Grange, Ph.D., director of the Eating Disorders Program at the University of Chicago. “All the ingredients have to be there for that person to develop anorexia.”

One of those ingredients is genetics. Twenty years ago, the Price Foundation sponsored a project that collected DNA samples from thousands of people with eating disorders, their families, and control participants. That data, along with information from the 2006 Swedish Twin Study, suggests that anorexia is highly heritable. “Genes play a substantial role in liability to this illness,” says Cindy Bulik, Ph.D., a professor of psychiatry and director of the University of North Carolina’s Eating Disorders Program. And while no one has yet found a specific anorexia gene, researchers are focusing on an area of chromosome 1 that shows important gene linkages.

Certain personality traits associated with anorexia are probably heritable as well. “Anxiety, inhibition, obsessionality, and perfectionism seem to be present in families of people with an eating disorder,” explains Walter Kaye, M.D., who directs the Eating Disorders Treatment and Research Program at the University of California-San Diego. Another ingredient is neurobiology—literally, the way your brain is structured and how it works. Dr. Kaye’s team at UCSD uses fMRI technology to map blood flow in people’s brains as they think of or perform a task. In one study, Kaye and his colleagues looked at the brains of people with anorexia, people recovered from anorexia, and people who’d never had an eating disorder as they played a gambling game. Participants were asked to guess a number and were rewarded for correct guesses with money or “punished” for incorrect or no guesses by losing money.

Participants in the control group responded to wins and losses by “living in the moment,” wrote researchers: “That is, they made a guess and then moved on to the next task.” But people with anorexia, as well as people who’d recovered from anorexia, showed greater blood flow to the dorsal caudate, an area of the brain that helps link actions and their outcomes, as well as differences in their brains’ dopamine pathways. “People with anorexia nervosa do not live in the moment,” concluded Kaye. “They tend to have exaggerated and obsessive worry about the consequences of their behaviors, looking for rules when there are none, and they are overly concerned about making mistakes.” This study was the first to show altered pathways in the brain even in those recovered from anorexia, suggesting that inherent differences in the brain’s architecture and signaling systems help trigger the illness in the first place.

Food Is Medicine

Some of the best news to come out of research on anorexia is a new therapy aimed at kids and teens. Family-based treatment (FBT), also known as the Maudsley approach, was developed at the Maudsley Hospital in London by Ivan Eisler and Christopher Dare, family therapists who watched nurses on the inpatient eating-disorders unit get patients to eat by sitting with them, talking to them, rubbing their backs, and supporting them. Eisler and Dare wondered how that kind of effective encouragement could be used outside the hospital.

Their observations led them to develop family-based treatment, or FBT, a three-phase treatment for teens and young adults that sidesteps the debate on etiology and focuses instead on recovery. “FBT is agnostic on cause,” says Dr. Le Grange. During phase one, families (usually parents) take charge of a child’s eating, with a goal of fully restoring weight (rather than get to the “90 percent of ideal body weight” many programs use as a benchmark). In phase two, families gradually transfer responsibility for eating back to the teen. Phase three addresses other problems or issues related to normal adolescent development, if there are any.

FBT is a pragmatic approach that recognizes that while people with anorexia are in the throes of acute malnourishment, they can’t choose to eat. And that represents one of the biggest shifts in thinking about eating disorders. The DSM-IV, the most recent “bible” of psychiatric treatment, lists as the first symptom of anorexia “a refusal to maintain body weight at or above a minimally normal weight for age and height.” That notion of refusal is key to how anorexia has been seen, and treated, in the past: as a refusal to eat or gain weight. An acting out. A choice. Which makes sense within the psychodynamic model of cause.

But it doesn’t jibe with the research, which suggests that anorexia is more of an inability to eat than a refusal. Forty-five years ago, Aryeh Routtenberg, then (and still) a professor of psychology at Northwestern University, discovered that when he gave rats only brief daily access to food but let them run as much as they wanted on wheels, they would gradually eat less and less, and run more and more. In fact, they would run without eating until they died, a paradigm Routtenberg called activity-based anorexia (ABA). Rats with ABA seemed to be in the grip of a profound physiological imbalance, one that overrode the normal biological imperatives of hunger and self-preservation. ABA in rats suggests that however it starts, once the cycle of restricting and/or compulsive exercising passes a certain threshold, it takes on a life of its own. Self-starvation is no longer (if it ever was) a choice, but a compulsion to the death.

That’s part of the thinking in FBT. Food is the best medicine for people with anorexia, but they can’t choose to eat. They need someone else to make that choice for them. Therapists don’t sit at the table with patients, but parents do. And parents love and know their children. Like the nurses at the Maudsley Hospital, they find ways to get kids to eat. In a sense, what parents do is outshout the anorexia “voice” many sufferers report hearing, a voice in their heads that tells them not to eat and berates them when they do. Parents take the responsibility for making the choice to eat away from the sufferer, who may insist she’s choosing not to eat but who, underneath the illness, is terrified and hungry.

The best aspect of FBT is that it works. Not for everyone, but for the majority of kids and teens. Several randomized controlled studies of FBT and “treatment as usual” (talk therapy without pressure to eat) show recovery rates of 80 to 90 percent with FBT—a huge improvement over previous recovery rates. A study at the University of Chicago is looking at adapting the treatment for young adults; early results are promising.

The most challenging aspect of FBT is that it’s hard to find. Relatively few therapists in the U.S. are trained in the approach. When our daughter got sick, my husband and I couldn’t find a local FBT therapist. So we cobbled together a team that included our pediatrician, a therapist, and lots of friends who supported our family through the grueling work of re-feeding our daughter. Today she’s a healthy college student with friends, a boyfriend, career goals, and a good relationship with us.

A few years ago, Dr. Le Grange and his research partner, Dr. James Lock of Stanford, created a training institute that certifies a handful of FBT therapists each year. (For a list of FBT providers, visit the Maudsley Parents website.) It’s a start. But therapists are notoriously slow to adopt new treatments, and FBT is no exception. Some therapists find FBT controversial because it upends the conventional view of eating disorders and treatments. Some cling to the psychodynamic view of eating disorders despite the lack of evidence. Still, many in the field have at least heard of FBT and Kaye’s neurobiological findings, even if they don’t believe in them yet.

Change comes slowly. But it comes.

* * *

Harriet Brown teaches magazine journalism at the S.I. Newhouse School of Public Communications in Syracuse, New York. Her latest book is Brave Girl Eating: A Family’s Struggle with Anorexia (William Morrow, 2010).

be there for that person to develop anorexia.”

One of those ingredients is genetics. Twenty years ago, the Price Foundation sponsored a project that collected DNA samples from thousands of people with eating disorders, their families, and control participants. That data, along with information from the 2006 Swedish Twin Study, suggests that anorexia is highly heritable. “Genes play a substantial role in liability to this illness,” says Cindy Bulik, Ph.D., a professor of psychiatry and director of the University of North Carolina’s Eating Disorders Program. And while no one has yet found a specific anorexia gene, researchers are focusing on an area of chromosome 1 that shows important gene linkages.
Certain personality traits associated with anorexia are probably heritable as well. “Anxiety, inhibition, obsessionality, and perfectionism seem to be present in families of people with an eating disorder,” explains Walter Kaye, M.D., who directs the Eating Disorders Treatment and Research Program at the University of California-San Diego. Another ingredient is neurobiology—literally, the way your brain is structured and how it works. Dr. Kaye’s team at UCSD uses fMRI technology to map blood flow in people’s brains as they think of or perform a task. In one study, Kaye and his colleagues looked at the brains of people with anorexia, people recovered from anorexia, and people who’d never had an eating disorder as they played a gambling game. Participants were asked to guess a number and were rewarded for correct guesses with money or “punished” for incorrect or no guesses by losing money.
Participants in the control group responded to wins and losses by “living in the moment,” wrote researchers: “That is, they made a guess and then moved on to the next task.” But people with anorexia, as well as people who’d recovered from anorexia, showed greater blood flow to the dorsal caudate, an area of the brain that helps link actions and their outcomes, as well as differences in their brains’ dopamine pathways. “People with anorexia nervosa do not live in the moment,” concluded Kaye. “They tend to have exaggerated and obsessive worry about the consequences of their behaviors, looking for rules when there are none, and they are overly concerned about making mistakes.” This study was the first to show altered pathways in the brain even in those recovered from anorexia, suggesting that inherent differences in the brain’s architecture and signaling systems help trigger the illness in the first place.
Food Is Medicine
Some of the best news to come out of research on anorexia is a new therapy aimed at kids and teens. Family-based treatment (FBT), also known as the Maudsley approach, was developed at the Maudsley Hospital in London by Ivan Eisler and Christopher Dare, family therapists who watched nurses on the inpatient eating-disorders unit get patients to eat by sitting with them, talking to them, rubbing their backs, and supporting them. Eisler and Dare wondered how that kind of effective encouragement could be used outside the hospital.
Their observations led them to develop family-based treatment, or FBT, a three-phase treatment for teens and young adults that sidesteps the debate on etiology and focuses instead on recovery. “FBT is agnostic on cause,” says Dr. Le Grange. During phase one, families (usually parents) take charge of a child’s eating, with a goal of fully restoring weight (rather than get to the “90 percent of ideal body weight” many programs use as a benchmark). In phase two, families gradually transfer responsibility for eating back to the teen. Phase three addresses other problems or issues related to normal adolescent development, if there are any.
FBT is a pragmatic approach that recognizes that while people with anorexia are in the throes of acute malnourishment, they can’t choose to eat. And that represents one of the biggest shifts in thinking about eating disorders. The DSM-IV, the most recent “bible” of psychiatric treatment, lists as the first symptom of anorexia “a refusal to maintain body weight at or above a minimally normal weight for age and height.” That notion of refusal is key to how anorexia has been seen, and treated, in the past: as a refusal to eat or gain weight. An acting out. A choice. Which makes sense within the psychodynamic model of cause.
But it doesn’t jibe with the research, which suggests that anorexia is more of an inability to eat than a refusal. Forty-five years ago, Aryeh Routtenberg, then (and still) a professor of psychology at Northwestern University, discovered that when he gave rats only brief daily access to food but let them run as much as they wanted on wheels, they would gradually eat less and less, and run more and more. In fact, they would run without eating until they died, a paradigm Routtenberg called activity-based anorexia (ABA). Rats with ABA seemed to be in the grip of a profound physiological imbalance, one that overrode the normal biological imperatives of hunger and self-preservation. ABA in rats suggests that however it starts, once the cycle of restricting and/or compulsive exercising passes a certain threshold, it takes on a life of its own. Self-starvation is no longer (if it ever was) a choice, but a compulsion to the death.
That’s part of the thinking in FBT. Food is the best medicine for people with anorexia, but they can’t choose to eat. They need someone else to make that choice for them. Therapists don’t sit at the table with patients, but parents do. And parents love and know their children. Like the nurses at the Maudsley Hospital, they find ways to get kids to eat. In a sense, what parents do is outshout the anorexia “voice” many sufferers report hearing, a voice in their heads that tells them not to eat and berates them when they do. Parents take the responsibility for making the choice to eat away from the sufferer, who may insist she’s choosing not to eat but who, underneath the illness, is terrified and hungry.
The best aspect of FBT is that it works. Not for everyone, but for the majority of kids and teens. Several randomized controlled studies of FBT and “treatment as usual” (talk therapy without pressure to eat) show recovery rates of 80 to 90 percent with FBT—a huge improvement over previous recovery rates. A study at the University of Chicago is looking at adapting the treatment for young adults; early results are promising.
The most challenging aspect of FBT is that it’s hard to find. Relatively few therapists in the U.S. are trained in the approach. When our daughter got sick, my husband and I couldn’t find a local FBT therapist. So we cobbled together a team that included our pediatrician, a therapist, and lots of friends who supported our family through the grueling work of re-feeding our daughter. Today she’s a healthy college student with friends, a boyfriend, career goals, and a good relationship with us.
A few years ago, Dr. Le Grange and his research partner, Dr. James Lock of Stanford, created a training institute that certifies a handful of FBT therapists each year. (For a list of FBT providers, visit the Maudsley Parents website.) It’s a start. But therapists are notoriously slow to adopt new treatments, and FBT is no exception. Some therapists find FBT controversial because it upends the conventional view of eating disorders and treatments. Some cling to the psychodynamic view of eating disorders despite the lack of evidence. Still, many in the field have at least heard of FBT and Kaye’s neurobiological findings, even if they don’t believe in them yet.
Change comes slowly. But it comes.
* * *
Harriet Brown teaches magazine journalism at the S.I. Newhouse School of Public Communications in Syracuse, New York. Her latest book is Brave Girl Eating: A Family’s Struggle with Anorexia (William Morrow, 2010).

Double Xpression: Darlene Cavalier of Science Cheerleader and SciStarter

Darlene Cavalier (source)

Darlene Cavalier (Twitter) is the hard-working and seemingly tireless founder of Science Cheerleader and SciStarter. She has held executive positions at Walt Disney Publishing and worked at Discover Magazine for more than 10 years. Darlene incorporated her experience and knowledge in serving as the prinicple investigator of a $1.5 million grant from the National Science Foundation to promote basic research through partnerships with Disney and ABC TV and also has collaborated with the NSF, NBC Sports, and the NFL to produce the Science of NFL Football series. She holds a master’s degree from the University of Pennsylvania where she studied the role of the citizen in science and is herself a former Philadelphia 76ers cheerleader. In addition, she is a writer and senior adviser to Discover Magazine. You can find her full biography here.


On top of all of that, she is also mother to four children. You might be able to blame them for the two-day stomach flu Darlene was just getting over when she talked with Double X Science Managing Editor Emily Willingham about why women pursue professional cheerleading (hint: it’s much more about passion than pay), why cheerleader stereotypes are “bunk,” and why even if Science Cheerleader doesn’t lead all little girls into science, it leaves them with a message about being secure in who they are.

DXS: First, can you give me a quick overview of what your scientific background is and your current connection to science?

A: So I have no formal science degree. My connection to science is that I work and continue to work at Discover magazine. I worked there as business development coordinator, and that’s how I became reintroduced to science. I became a fan of science later in life. After working at Discover for a couple of years and having some children [Cavalier is the mother of four children], I wondered if there was a more significant role for someone like me without a formal science degree. My role at Discover had become curating science on behalf of the magazine. How do we get average public to move in the direction of science literacy?

I went to grad school at the University of Pennsylvania to look at those issues. When I met with an advisor (there), he recommended that I go for a masters in liberal arts, which made sense to me at the time. They created a curriculum for me. Most was in the history and sociology of science and some was in school of education. Piecing all of this together was a turning point for me in my life both prof and personally, I started to learn about these citizen scientists to engage nonscientific members of the public in real scientific research.

I saw huge gaps in getting people to move in that direction. Other countries were enabling citizens to take part in conversations about science policy on national levels. The U.S. didn’t have mechanism for that. That was one gap I saw. Another was people weren’t getting involved in citizen science projects…(they were) hard to find and scattered all over websites. It was a mechanism problem, not philosophical or societal. In grad school, I created a matchmaking site of all citizen science projects I was coming across. I decided to make that database public for people to add their projects, and made it searchable. There were no cheerleaders involved in science cheerleaders when I started the blog…it was about the citizen science projects and reopening this agency for public input. (It was not about) cheerleaders specifically.

                                            

DXS: So how did you end up incorporating the cheerleader aspect?

A: That was basically a fun way of using my background–it is surprising to people that I was a (Philadelphia) 76ers cheerleader. I kept it secret for long time at Discover, fearing I wouldn’t be taken seriously. I wish I hadn’t attempted (to keep it) secret; when it was “exposed” at Discover people were great about it. They thought it was pretty neat. So I became more comfortable in that role. I wanted to do a tongue-in-cheek look at this when I was starting the blog that this site really is for everyone. Citizen science projects are for everyone; it doesn’t matter if even a quote–unquote “ditzy blonde cheerleader” can do it, surely the scientists could figure it out, and the politicians.


(When the concept of Science Cheerleader really took off), we thought, “We’re on to something.” Most people loved it. Criticism came from feminist science bloggers, which I totally understand…I learned something there, too… (this idea of), “these women aren’t scientists, what are they doing?” Then I started getting emails from actual NFL NBA cheerleaders, (telling me) “I’m getting PhD in chemistry,” (and saw it as) a great way to merge two parts of my life. I could hardly believe it. I never even had thought to ask cheerleaders if they were studying any of the STEM fields.

It became cyclical. The founder of the U.S. Science and Engineering Festival called and asked Science Cheerleader to come to that festival and perform. I had to tell him I’d never met them. We got a grant from the Burroughs Wellcome fund to cover travel for 11 science cheerleaders to come to Washington and perform. They had awesome outfits, speaking roles. It was more or less an experiment. Amazing performers against a science theme routine and incredible public spokespeople.  Applying their talents of being enthusiastic about their team to science and tech careers. They were a huge hit at the festival. 

We left each one speak their own language. They’re very diverse. It helped to have that diverse makeup and watching them talk to little kids. Little girls would come up to them, almost like when you see Cinderella, would want their autographs, to touch their uniforms, feel their pompoms. It was a great opportunity to say, “We love cheerleading, but in the daytime I make cars, I’m what you call an engineer.” Some of the dads and the moms were more attracted to the team (the cheerleaders) represented, and they learned that no cheerleader makes a living on 35 bucks a game…they have professions.

We started to realize we were challenging stereotypes of scientists, cheerleaders, engineers. We have so many science cheerleaders in the database, working now with the NFL and NBA, (that) when a local event is happening, I can contact science cheerleaders in the Boston area tell them, and they can go if they want. They don’t have talking points … they say what they want to say. A Patriots cheerleader says cheerleading was great for her professional career, standards were super high for her in college. (You have to maintain) a GPA to be cheerleader and athlete, (and that) was helpful.

DXS: And you’ve encountered some criticism from feminists or women in science. How do you handle that?

A: You can’t be a science cheerleader unless you have science connection. I’m the only fraud in the group. That’s the criterion. What is different, there was so much media play…NPR, CNN, TODAY Show, you can only get across so much in a video. A couple of people took a video where someone says “go science” and assumed we’re just dressing people up as cheerleaders and sending them around to yell that. (But) there’s a lot of depth with what they do.

Many are very accomplished in their fields, going on to do research. One is getting her PhD in chemistry, working on gold nanoparticles to treat pancreatic cancer. That criticism that’s ill informed is the worst type. Putting them in a bad light and they don’t deserve it. They volunteer to do this. They do it because they really believe in it. There are an estimated 3 to 4 million cheerleaders in the US. They want to reach that group, let them know it’s OK to love math and science, (to say) here’s my experience, here’s how I learned what an engineer is, here’s what my day is like. They’re all available to be pen-pal partners. As much as we preach “don’t let other people bother you or criticism bother you,” I don’t like to see ill-informed or misinformed statements.

Q: Have you encountered situations in which your expression of yourself outside the bounds of science has led to people viewing you differently–either more positively or more negatively?

A: Yes. (What) we have is mostly anecdotal…have a number for people coming to site, watching video, we try to save emails and letters that come in from moms of little girls who just want to be cheerleaders but also are talented, and the moms feel they’re talented in math and science and grow concerned about their daughters losing that for their love of cheerleading and dance and are happy to see these role models on the site.

In terms of other positive impacts, if we just look at it from public outreach, it’s been incredible because of the media’s interest. Media interest in this, the teams themselves…it’s not easy to reach Baltimore Ravens fans w positive messages about science and tech or women and science and tech, so when the Ravens repost the interviews and tweet it to their fan base, that’s very positive.

Lines at live events are pretty long with kids lining up to get autographs from the Science Cheerleaders. We always look for local or regional citizen science activity to capitalize on that attention to get those people to do something. For example in South Texas a science and engineering festival. We did our routine, a bunch of people line up for autographs, our choreographer is the reigning Miss United States. That attracts people as I talk about a local researcher who needs their help for citizen science project. (It’s) super simple to use that attention to say “hey, by the way, you’re needed. When you see this crayfish–hold up a picture–it’s considered invasive. Here’s Dr. Zen!” He (Dr. Zen) came out and talked, while they’re waiting inline, a captive audience, and we give the Website where they can get involved.

Our sister site, is now a full-size website called SciStarter, a startup company. That was named one of Philly’s top-10 tech startups last year! It aggregates all of the citizen science projects out there. We rely on that at all of the Science Cheerleader appearances.

I can do what I know how to do, but I would love some grad student or organization that does evaluations or measures outcomes and help me learn more about the metrics, direct outcomes that can be measured, and how do I do that.

DXS: Have you found that your non-science expression of creativity/activity/etc. has in any way informed your understanding of science or how you may talk about it or present it to others?

A: It’s a great question. It’s interesting because that Science Cheerleader blog that I started with and still have–it’s a very diverse audience. There are people who came because they’re reading about their favorite teams’ cheerleaders doing cool things and that ‘s great. I’d have a lot of those types coming to the site, and they’d learn, “hmm that’s interesting I didn’t realize that’s what a chemical engineer does,” then look to their right and see, “hmmm this is happening in Boston”… and take next step from passive reader to getting involved in a citizen science project. The goal is to move them to being actively engaged citizens getting them prepared aware involved in the science policy conversation. I know that sounds so farfetched but not nearly as much as a couple of years ago.

It is not easy to talk to different audiences. I used to preach “know your audience,” but I’ve learned more from my audience than they may have from me. I consider some of the science bloggers, and they’re a part of the audience. I learned they don’t like 76ers involved without science degrees, and we responded to that. What one group likes another won’t. There’s no “one size fits all.” We try to (appeal) to a wide variety of audiences coming to site….from those interested in science policy to people who come because they want more about citizen science efforts. We can point them to these things through SciStarter.

DXS: How comfortable are you expressing your femininity and in what ways? How does this expression influence people’s perception of you in, say, a scientifically oriented context? And does that impression evolve at all?

The initial impression, even through me–and I think the Science Cheerleaders would say this too, even when I was of the Sixers…(pauses)… let’s talk motivation for a minute, why most of these women choose to become professional cheerleaders, why would you do that? The bottom line is that there are very few opportunities to continue dancing and performing once you’re out of college. My personal experience–and you’ll see this in interviews–your options are so limited, and we wanted to continue performing, usually it’s dancing. We see an audition in paper, and they’re looking for people who know how to do triple pirouettes, and the opportunity to continue to perform is there.

I wish we didn’t have to wear those uniforms when I was on the Sixers. I loved every single thing about it except for some of the uniforms. I would love for the NFL and NBA to look and say, “We didn’t realize cheerleaders felt that way and tone it down,” (but) it’s not going to happen. I encourage people to read interviews to see what motivated some of the cheerleaders. I wasn’t a gung-ho Sixers fan who wanted to do this for the team, but some people almost their whole lives dreamed of being a cheerleader for their team.

In terms of embracing being feminine, I don’t know anyone who is that 100% of the time. My hair looked decent, I wore OK clothes, but I don’t walk around like that all the time. I think that the reality of the situation is there’s no one walking around looking like a professional cheerleader all the time. I doubt that the Science Cheerleaders look like that when they go into the lab, not because they want to be taken seriously but for convenience. It s a lot of work to look like that.

I wish that the people who pave the way for these Science Cheerleaders to be exploring the careers they have now–lots are supportive and embrace them but that also happens to be where the toughest critics are embedded. They know better than anyone what it feels like to have somebody work against you. I wish they’d ease up on Science Cheerleaders and let them be all that they can be. They can relate to an audience it’s not easy for us to reach. I can’t reach those little cheerleaders out there myself, but they can, maybe through pom-poms or uniforms or a connection with the moms. It does evolve

Some teams require you to be in school full time or have a full-time job. They want smart cheerleaders because you have to be out doing public speaking so if you’re not articulate or bright…pretty girls and good dancers are a dime a dozen…your success comes down to your interview.

These Science Cheerleaders are by far way more secure in their dual roles than I was. I’m not sure why or how, but when you see them at appearances, they’re looking for ways to embrace these two roles. They’ll say in their interview, I don’t care what people in my lab think about my wearing makeup and so on, and they mean it. These women walk the walk.

DXS: If you had something you could say to the younger you, back when you weren’t so comfortable with yourself about the role of expression and creativity in your chosen career path, what would you say?

A: If I had read one of these interviews when I was, say, in fifth grade, and I read one of those Science Cheerleader interviews, it would resonate w me in a different way. It might not have an impact on me personally when I was a kid…the cheerleaders on our team, we were athletes. Most cheerleaders are leaders in their schools, involved in leadership and academics, student government. The stereotype is total bunk. 

I can tell you that in some point in my life, I can think back to times, like my first big job at Discover, had I read these interviews as a kid, I may have felt more comfortable about being authentic about every aspect of me. 

To use the Pop Warner example, we set a world record with them, 1300 little cheerleaders cheering for science for five minutes. I have a sneaking suspicion that fast forward 10 years from now, they might be interviewed, by you maybe, about how they got interested in science, and they might say, when I as in 8th grade, I got called in to do this science cheer thing, and it opened my eyes to science as a valid career. If it doesn’t happen at a young age for some of these girls, they might reflect back to something they experienced science cheerleading and feel entitled to embrace all that they are and feel good about that.
————————————————————————–
See the Science Cheerleaders in action at the Science and Engineering Festival:

By Emily Willingham, DXS managing editor 

flu pic resized

25 myths about the flu vaccine debunked

Setting the record straight on the flu vaccine

by Tara Haelle
Continue reading

Double Xpression: Debbie Berebichez, PhD Physicist

Deborah is the first Mexican woman to graduate with a physics PhD from Stanford University. She is a physicist, author, and media personality whose initiatives to popularize science have impacted thousands of people around the world. Her passion is to popularize science and motivate young minds to think analytically about the world. This has led her to pioneer learning initiatives in schools and universities in Mexico, Africa, the US and Israel. She is a frequent public speaker and has been recognized by numerous media outlets such as Oprah, CNN, WSJ, TED, DLD, WIRED, Martha Stewart, City of Ideas, Dr. Oz Show, Celebrity Scientist and others. She regularly appears as a science expert on different international TV networks; currently she is the TV host of National Geographic’s “Humanly Impossible” show. And she will appear on the Discovery Channel’s upcoming show ‘You’ve Been Warned.’  You can find Deborah on Twitter, or on her blog, Science With Debbie.  You can also find Deborah telling her story for The Story Collider.



DXS: First, can you give me a quick overview of what your scientific background is and your current connection to science?

I grew up in Mexico City in a fairly conservative community, and as a child, I was discouraged from doing and studying science.  My parents, family, and peers would all ask, “oh, why don’t you study a more feminine career?” Although I was pretty good in school, I wasn’t exactly a math wizard.  I used to say that I loved philosophy and physics – because philosophy was a deep discipline of asking questions about the world.  And physics studied the world itself.   
It was clear when I was born that my personality was was quite different to the one of my mom.  When I was growing up, my mom was scared because she didn’t know what to do with this little girl that was smart and always asking questions.  She is not a naturally curious person, so she kept trying to tame down my curiosity and kept telling me not to tell boys that I was interested in math and science because I would never find a husband.  According to her, the life goal for a girl was to find a husband, have kids, and that’s it.  Women didn’t have to have a career.  (Not that there is anything wrong with not having a career.)  My high school teachers and counselors were not so different and encouraged me to go into philosophy or literature, not into math or physics.  And my friends in school told me I literally had to be an out of the world genius to be able to study physics.      
Given the circumstances, I started studying philosophy in Mexico.  There were some classes with logic, and some with a little bit more math, and those were the ones I just devoured!  And, at the same time – secretly – I was reading the biographies of scientists.  For some bizarre reason, I was hugely attracted to their life stories.  I didn’t have any family members, or anyone else for that matter, that had pursued a career in science, so I didn’t have a mentor or a role model.  I felt an extreme kinship with Tycho Brahe, who in the late 1500’s was locked in a tower, doing all of these calculations for years, hated by everyone in the town.  Go figure! I felt some kinship with these scientists.   But I didn’t have the courage nor the means to switch majors.  I did confess that I wanted to study another area (physics), but in Mexico one cannot study two majors. So, I studied philosophy for two years.

In the middle of it, I felt way too curious about science and I decided to apply to schools in the US.  It was hard at the time because college in Mexico was a lot cheaper than in the states.  At the private school where I was attending, my tuition was about $5,000 per year.  If I were to come to the US, I would be looking at costs exceeding $35,000 per year. I couldn’t really ask my dad to help me with that price tag so I started to apply everywhere and anywhere that had scholarship opportunities.

I ended up getting a letter from Brandeis 

University saying that they would let me take this advanced placement test and write an essay, which, if I did well, would give me a full scholarship.  I received a full Wien Scholarship and was to continue studying philosophy in the US.  This was probably the nicest thing that has ever happened to me because it opened the path of opportunity.

Brandeis transformed me as a person – I saw females doing science!  But, the bravado moment that changed my life was a very general course called Astronomy 101.  The teaching assistant, Roopesh, was a very sweet man from India and he saw that my eyes would just light up when I was in that class – I was much more curious than the random student that was just taking it to fulfill some requirement.   
At the end of that year, Roopesh and I 

were walking around Harvard Square and stopped to sit under a tree.  I started to tell him, with tears in my eyes, that I just don’t want to die without trying.  What I meant by that is I don’t want to die without trying to do physics.  Everyone’s questioning of my decision made me question my actual ability.  Everyone telling me ‘no’ hampered my development.  I mean, I was good at math, but I definitely didn’t have the same background as all the kids coming in with advanced math and physics courses. 
 

I told Roopesh that I don’t even remember how to solve the equation (a+b)2 – even my algebra was rusty!  But, he believed in me and went back to his professor and told him my story.  This professor decided to meet with me and ends up telling me about someone who had done this sort of thing in the past.  His name was Ed Witten and he went on to become the father of string theory.  

He said “Witten had switched from history to physics, and I will let you try too.”  With that, he handed me a book on vector calculus called ‘Div, Grad and Curl’ and told me that If I could master it in three months by the end of the summer, they would let me switch my major to physics and also let me bypass the first two years of course work.  This would allow me to graduate by the time my scholarship ran out.        
I have never in my life experienced the level of scientific passion condensed into such a short amount of time and I am jealous of the person I was that summer.  I had so much perseverance and focus.  I don’t think I can ever reproduce that intensity again.  From the moment I woke up to the moment I went to sleep, and even in my dreams, I only thought about physics. Roopesh, who became my mentor for the summer, taught me.  

I always wanted to pay Roopesh for his tutoring, but he would never accept any money.  He told me that when he was growing up in the mountains of Darjeeling in India, there was this old man who would climb up to his home and teach him and his sisters English, the musical instrument Tabla, and math.  Roopesh’s father always wanted to pay the old man for his tutoring, but the man always declined.  The man said that the only way he could ever pay him back was if Roopesh did the same thing with someone else in the world.  And by mentoring me, Roopesh fulfilled his payment to the old man.  
Out of that, that became a seed for my physics journey and purpose.  It is now my life’s mission to do the same for other people in the world – especially women – who feel attracted to science but feel trapped.  They for some reason, whether it is social, financial, etc., just can’t find the way toward science.  That is the motivation that dictates my actions.
I was able to pull it off and graduated Brandeis Summa Cum Laude with highest honors in physics and philosophy. I went back to Mexico afterwards to figure out what to do next and to spend some time with my family. At the same time, I did a master’s degree in physics at the largest university in Mexico UNAM.  My curiosity for physics didn’t diminish and in 1998, I randomly applied to two physics PhD programs in the US.  I applied very, very late, but, fortunately, I won a merit-based full scholarship from the Mexican government who provided me with funding, which made it easier for me.    


Because I loved biophysics, I did a search on who was doing this line of research.  I came across Steven Chu, who is currently the secretary of energy.  At the time I was applying, he was at Stanford and was one of the first to manipulate a single strand of DNA with his ‘optical tweezers.’  To me, his story was fascinating!  Without really knowing who he was other than what I found on the web, I wrote him an email asking him if I could work in his lab.  Had I known who he was – that he had just won the Nobel prize in 1997 – I would have been too intimidated.  


I was admitted to Stanford and was invited to work with Dr. Chu, but after two years I decided to switch labs.  As expected, it was a very challenging environment and having only studied two years of physics at Brandeis, I wasn’t as prepared as most of the other students.  I struggled for the first two years.  Everyone worked so extremely hard at Stanford and there I was, struggling to be the best, but, in the beginning, I couldn’t even be average.

Fast forward four years.  I had worked my butt off and ended up becoming the first Mexican woman to graduate with a PhD in physics from Stanford.  It was the best day of my life – I kept thinking that I was so blessed to have my parents live to see this!  It was so moving, I was crying so much and I couldn’t believe what had happened.  My friends had flown in from all over the world to be with me.  It was amazing. 

When people hear what I do, they – especially teenage girls – feel intimidated.  But, when they hear the whole story, their tune changes.  I tell them that I know what it is like to not understand something.  I was not the kind of person where comprehension of my science came naturally.  But I did it.  And if I can do it, anyone can do it!  My story can be inspirational to someone who comes from a background completely lacking in science because they, like me, can reach their goal. 
DXS: What ways do you express yourself creatively that may not have a single thing to do with science?

I was always a very curious girl growing up. I had a lot of interests, one of which being theatre.  I wanted to be an actress when I was young, but my father didn’t let me pursue that as a career, which was probably a good idea.  But, during high school, I went to an after school drama program.  I wrote my own plays – three of them – and performed one of them.  I was in heaven when I was on stage. 

In NY, I have tried to do a little bit of that.  Of course, I’ve never done any big roles, but I will be an extra in a film, or if there is a small production being made in Spanish, I will play a part.  It doesn’t matter how big the role is – I just love doing something creative and getting into a character. 

DXS: What types of productions and/or films have you done?

I don’t think I would come up in the credits as an extra, but I did a movie with Simon Pegg, Kirsten Dunst and Megan Fox in the movie “How to lose Friends and Alienate People.” It was a very, very fun film!  In theatre, Jean Genet, who is a French playwright, has a play called The Maids, and I was the madame.   

DXS: Do you find that your scientific background informs your creativity, even though what you do may not specifically be scientific?

Debbie talking to the TEDYouth audience about waves.

I have a concept that I call “physics glasses.”  And what I mean by that is, for me, physics is not a subject that you just teach in a complex way in a classroom.  Rather, physics is something that is related to everyday life.  From the moment you wake up, you can just put on your physics glasses.  It is a mode of thinking – it is a way where although reality can be very rich and diverse, physics goes very deep and it abstracts commonalities, general principles that apply to many things.  To give you an example, I asked the kids in the audience of my TEDYouth talk, “what do the sun, the ocean, and a symphony orchestra have in common?”  When just looking at them on the surface, there isn’t much in common.  I mean, they are all beautiful things but they are not obviously related.  But, to a physicist, they are all waves.   You have sound waves, light waves, and water waves and you can interchange many of the concepts in physics to explain all three.



Where most of us see the world with our eyes through light waves, other might see the world differently.  Take, for example, my friend Juan, who is blind.  He “sees” the world with sound waves – he senses sound as it bounces off the objects around him.  Through this, he can bike, play basketball, and do a load of activities using sound as a guide.  This is one of my favorite analogies because, really, physics “infects” the way I see the world. 

Deborah the Physicist model

To give you a more specific example in the creativity realm, when I got to NY, I felt really un-feminine.  When I was studying physics, I felt that if I was even slightly feminine, I wouldn’t be respected.  It didn’t help that some of the other women in the physics program at Stanford were more of a “guys girl,” always wearing a baseball cap and t-shirts.  Now, since I am Latin, I first showed up wearing a skirt to class, but I quickly learned to dress down.  Looking feminine would assure that no one would talk to me in class.



So, when I got to NY, I had an explosion.  I wanted to know what it was like to express myself as a woman and my friend suggested that I do some modeling.  So I did.  It was a brief, lasting about a year.  But during that time, my friend, who was a designer from Mexico, asked me to work with her and I wrote and did some videos about the physics of fashion, which also included the physics of high heels video.  


Some people could consider fashion to be superficial, but not me.  I love fashion and color.  But, other scientists generally looked down upon you for liking this sort of thing.   This fueled my desire to prove to everyone that there actually is science everywhere, including fashion, and that they shouldn’t be snobs about it.  There is complex science in how different materials work, how they interact with the environment and you can prove to the women, like my mother and friends back home who think that science has nothing to do with their everyday lives, that it has EVERYTHING to do with it.   So I talked about a Newtonian theory for color – how to pick the right color for you based on how much light the color would reflect on that day, etc.  

DXS: Like a more sophisticated version of colors based on your “season?”

DB: Exactly! 

I also did pieces on the materials, including some of the newest engineering accomplishments with fabric.  For example, I hooked up with a woman and helped her to design a fashionable and very scientific coat.  It ended up costing $11,000, but it was made up of nano fibers and it had a patch in it that could detect the temperature and the probability of rain.  Based on this probability, it could change permeability of the fabric.  It was a very light coat that was comfortable in nice weather, but when it would rain, it would become impermeable to water once it detected a high probability of rain, transforming into a raincoat.

DXS: That’s incredible!  I wish it wasn’t $11,000!

DB:  Yeah, that’s usually the problems with these technologies.  They are often so novel, but one day I’m sure we can figure out how to make things like this scalable.

Science is very much what guides my thinking when I am being creative and I wish I had more time to do creative things while being influenced by a scientific mindset.

DXS: It is so cool that physics has such an incredible overlap with everyday living.  Like, when we take a shower, I want to know “how is the water getting pumped from the ground or through pipes and make its way out of the showerhead?”  But, as a biochemist, I often find it hard to relate everyday things to biochemistry, but I would like to!

DB: Its funny that you say that.  When I try to teach girls that the worst thing they can do is memorize.  Critical thinking is so important and they shouldn’t take anything at face value, and they should even question teachers and authoritative figures in their lives.  Always ask: what goes into making this?  Why is this here?  Why is it this way and not another?  Constantly ask questions.  That s the gift that physics will give you. 

DXS: Have you encountered situations in which your expression of yourself outside the bounds of science has led to people viewing you differently–either more positively or more negatively?

Without saying I am a scientist, I can tell you that people have come up to me and told me that before they even hear me speak, they think I am dumb.  They are usually surprised that I am smart!  I think it is because I am bubbly and friendly and that often makes an impression as being unintelligent.  For them it seems that if a woman is intelligent, she is very cold and distant and serious.  


I’ve met a lot of physicists, and yes, some of them do tend to be that way, often as a reaction to how others treat them.  Or, people would say to me that, because I am Latin, my cultural identity comes across as being warm and the last thing they’d expect me to be into was something as cold as physics.  So yeah, I have definitely been judged so many times!  


It even happens in my current job on Wall Street, especially with my male peers.  When there are off site client meetings, I’m often accompanied by my male sales colleague.  Sales people are generally required to know less about the complexities behind our risk models compared to someone on a more research-oriented role, like me and he will bring me along to these sales meetings in case the potential client has more sophisticated questions that go beyond what he can comfortably answer.  Many times upon meeting the clients for the first time they think that I am the sales person, there to be the smiling face to sell them something, and that he is the risk modeler.  They always direct their mathematical questions to him. 
It came to a point where I became so annoyed that I decided to stop caring.  Now, my sales colleague goes out for drinks with the clients and I know that I am going to be invisible. So I don’t go anymore. I know that I am always going to struggle to get the full intellectual respect in that industry – it will always be a challenge.

DXS: Have you found that your non-science expression of creativity/activity/etc. has in any way informed your understanding of science or how you may talk about it or present it to others?

Yes, absolutely.  For example in Mexico, unlike the US, you absolutely have to do an honors thesis project as an undergrad in science.  Because I had already studied philosophy for four years, I wanted to do a thesis project in philosophy.  But I also wanted to do one in physics.  I recall that back in 1997, when you presented a dissertation in front of the physics community, if you had any power point, forget it.  You would be immediately be called dumb or not a good physicist.  Because, who takes the time to do something fancy!  If you had any color in your presentation, forget it!  


So, literally, the smartest students in physics were people who didn’t really communicate that well, or didn’t really speak English that well, or just didn’t really make an effort.  Their slides were on those overhead projector things with those rolls of plastic sheets, and most of their talks were so confusing and couldn’t be interpreted!  But they were respected!  It was just assumed that if the formula looked complex, they were probably right. 
So what I did was completely different.  I infused my talk with my spiciness and color.  I did an artwork of liquid crystals, which was my research at Brandeis.  Liquid crystals are little cigar-shaped molecules that actually make up the screen of your laptop.  If you pass an electric field through them, they all orient themselves and that is how we can use them for displays in our laptops and TVs. 

I colored these cigar-shaped molecules with purples and reds and greens, and I tried to explain it at the most basic level. This is because of one my philosophy professors in Mexico, who told me that if you cannot explain what you do to your grandmother or 6 year old niece, you don’t understand what you are doing – I loved it!  


And I said to myself that I shouldn’t care what they think.  I pretty much expected to not gain a lot of respect from the physics department, but it had the opposite effect!  I actually had one of the professors from that department come up to me and tell me that he had never really understood what a liquid crystal looked like or what it really was!  He said that “finally I understand [liquid crystals] because of your drawing.  Thank you!”  It was incredible!  


To see the effect on people and from then on, I bounced up in down, I made jokes, I put in creativity.  It doesn’t always have a great effect on very serious audiences, but the younger generation is definitely appreciative.  When it keeps going well, you gain confidence.  And, for me, I even started wearing high heels to the next talk.  When someone commented about my attire, I would counter, hey I have a PhD!

DXS: How comfortable are you expressing your femininity and in what ways? How does this expression influence people’s perception of you in, say, a scientifically oriented context?

This question is deep and a little bit of a struggle at the moment.  This is because I still have that fear – when I arrived in NY, I did that short stint in modeling and I expressed myself and I would dress very creatively – just like my other girlfriends who were not scientists.  But I did feel a little bit of a backlash.  By that I mean that I would post a photo of myself on Facebook or something like that.  They were pretty pictures, not at all seductive or provocative, and my high school mates, usually male, would write me saying: “I always knew you as a serious person and you have achieved so many things – I am just telling you for your own good that this can really damage your image.”  That made me reply with “so you’re telling me that being smart is actually kind of a bummer?”  That actually means that I have to dress very differently from what other women wear for the rest of my life? 

I remember feeling very upset about all of that.  I think that not being taken seriously is still a little bit of a fear of and I think my website has damaged my serious image a little bit.  As a scientist, I was very secluded from the outside world.  I didn’t have a lot of friends when I moved here, but I did know an amazing and powerful woman who happened to be the CEO of Blip TV.  She was insisting that I do videos!  So she invited me to her place and showed me how to do video.  Being the quick woman that she was, she asked me to make up a name for myself on the spot.  When I didn’t answer, she instantly coined “The Science Babe” for me.  I was like, sure, what a cool idea! 

It was kind of a cute name, but because English is not my first language, I don’t always understand some of the cultural connotations associated with some English words.  A few months later, I started to get a few emails from mothers who were upset that I was using my looks.  They would say things like “Are you saying that women have to be in the kitchen or wear short skirts  to be scientists?”  I would answer that no, that was not it at all.  I would further explain that I was trying to change the definition of “babe.”  If you are smart, if you are empowered, you will be a babe no matter how you look.  I am trying to shift what people think of when they think “scientist.”

I don’t feel quite successful with The Science Babe.  It seems like there are quite a few people, especially some from the older generation, who say that they’d love to introduce me to fancy science organizations but are worried that the name “the science babe” will make it difficult.  Also, I had the BBC wanted to talk to me about doing a TV show in NY, and then they said but there’s so much bad stuff out there about you!  And I was like, what do you mean?  They answered “All these things with the “science babe” brand…”

It doesn’t happen all the time, but some people are really critical about the science babe theme, citing that its way too feminine.  Other female scientists that haven’t gone that route have perhaps discounted my seriousness about science.  They assume that what I am doing is not really that important because I do focus on the science everyday life, which is simpler, and it is too much color and too much vivaciousness for our field.  I feel like my femininity has decreased over the last few years because I’ve been too nervous about not being taken seriously.  It s almost like the balance tipped the other way. I feel like perhaps I’ve feminized things to a fault and now I want to appear more serious.  So, I am changing my website to “Science With Debbie” because I really felt the backlash.

It is a struggle to find the balance between being able to express my femininity and presenting myself in a way that people will take me seriously.  In a way, I wish I had a little more courage to not care that much about what people have to say about the science babe but, unfortunately, agents have told me that if I don’t go to the “dumbed down version of femininity” I would get better speaking engagements.  Being feminine has literally affected my career, and it’s because of other people’s perceptions.  I’m never going to be bland, but I will try to change things so I am more serious

DXS: Do you think that the combination of your non-science creativity and scientific-related activity shifts people’s perspectives or ideas about what a scientist or science communicator is? If you’re aware of such an influence, in what way, if any, do you use it to (for example) reach a different corner of your audience or present science in a different sort of way?

The fact that I am approachable and pretty down to earth has allowed me to reach corners of society that more distant and fancy scientists would never even consider. For instance, I am going to a small university to give a talk.  Some of my friends ask why I even bother, especially considering that this insitution is not the most renowned university.  But, I feel the opposite – it is these corners that need the influence the most!  Similarly, when I go to Hispanic high schools, many of the mothers have never seen a scientist.  And there I am, a scientist from Mexico, speaking to them and their kids.  It is that powerful combination of being a smart and warm female that can be shocking, which is cool.

In line with this, there was an experiment where women were asked to draw a female scientist.  Most drew a plain, relatively unattractive woman.  Immediately when you break that mold, it has an incredible effect.  People say, “Hey! She kind of looks like me and she dresses like me.  Maybe I can do science too!”  Some girls are afraid that by being smart, boys won’t talk to them.  My femininity allows me to be a voice in a field that has tended to isolate themselves from the public, which is bad. Some of my colleagues have become a little snobbish.  The fact that I have serious credentials (PhD and 2 postdocs) shows that I had to work like crazy – looks and personality can only go so far.  It s hard work that gets you there! Serious science communication has a lot of math and problem solving in order to explain things accurately to the public. So I still feel like I am doing science!

   

   

The path from science to alarmism: How science gets twisted before it gets to you



Source.


Today’s post is long. It’s long because it involves the winding path that science can take from ignition to exploding into the public view… and how the twists and turns in that path can result in a skewed representation and understanding of the science. Read the whole thing. It focuses on an example that involves autism–which seems to pop up in skewed representations every day–but certainly this path from science to you, the consumer, happens with scientific information in general. The author is Jess, who blogged this originally at “Don’t Mind the Mess” and graciously gave us permission to reproduce it here. Jess, an attorney with a B.S. in biochemistry, parent of an autistic child and brand new baby, and self-described “Twitter fiend,” tweets as @JessicaEsquire
—————————————————————
I am putting my foot down.
As the parent of an autistic child I hear a lot about vaccines and about half a million other things that people think cause autism.
I’m hyperaware of the attention autism gets in the media. So I know about the CDC’s new stats on autism rates. I know about the debate on whether the increase in autism is due to more awareness and diagnosis or more actual occurrences. (Personally, I find the former to be a serious factor, though who’s to say how much.) And I see all the articles that come out week after week about the millions of things that are linked to autism.
There’s a recurring problem here. Valuable research is done. Research is disseminated. Information is reported. Articles are read. Findings are spread. What starts in a lab ends up in a Facebook status. What starts as truth ends up as mistruth in something like a child’s game of telephone. Along the way, piece by piece, truth fades away in favor of headlines and pageviews and gossip.
It’s getting just plain stupid. I’m starting to suspect these articles have nothing to do with serious research but with a search for traffic and hype, an attempt to ride the wave of a trendy topic as concerned parents read every horror story they can find.
A particularly egregious one came up recently. This one doesn’t just cite some random correlation. This one is just plain making things up. The problems here just pile one on top of the other. So let’s consider it piece by piece, a case study in how real research becomes misinformation.

Part One: Research

It starts with scientists. It starts with research. They write up their findings and publish them in a peer-reviewed scientific journal. In this case there are several papers published over a few years about chemicals and their link to brain development. They cover a wide variety of issues and present a wide variety of conclusions. All of them suggest further study.
Maybe they have bad methodology or use statistics incorrectly. Only a few people would ever know the difference. That’s not my concern today. Bad science is one thing, but bad information on good science is another. So let’s assume we have good, solid science in this research.

Part Two: The Conference

Scientists and researchers with similar interests get together and discuss their findings. It’s not that difference from any other conference. There are panels and presentations.

Part Three: The Op-Ed

Next, a group that works on environmental hazards for children publishes a paper. Not a research study but an op-ed in a peer-reviewed journal. In this op-ed they review the conference from Part Two and encourage the study of environmental factors and their relationship to neurodevelopment disorders. Autism is one of many neuro-ish disorders and is mentioned by name in the piece and its title. It’s unclear to me why they zero in on autism. They have a couple vague pieces of evidence that are autism-specific, but the vast majority of what they’re looking at has never been demonstrated to have any kind of relationship to autism, not even a correlation.
Problem #1 is the unnecessary autism name-checking. Problem #2 is much worse, it’s the list of 10 chemicals they suggest for future study. The list itself isn’t a bad idea, I guess. They’re suggesting places for potential research, which certainly needs to be done. But it does reek a little bit of the kind of thing magazines do, you know what I mean, 10 Ways To Get Your Guy All Fired Up! and such. Still, it’s their prerogative.
So let’s examine their evidence for these suggestions. They cite at least one paper for each of these chemicals. I checked them all. The vast majority of them have never shown any connection to Autism (or even ADHD, another diagnosis they name-check). In fact, many of them show that with exposure to these chemicals, the outcome differentials between exposure and non-exposure is 5 IQ points.
FIVE IQ POINTS. Statistically significant? Perhaps. Practically important for a parent? No.
IQ itself is a strange and vague thing. And 5 points isn’t going to move your super-genius down to the level of an average person They’d still be a super-genius. And adding 5 points to someone with severe deficits isn’t going to make them average, either. It’s hard to imagine what difference you’d see between two people whose IQ’s are 5 points apart.
Such statistical differences may well be a sign to warrant further study. And they may be a sign that these chemicals affect neurological development. But it’s getting a bit ahead of ourselves to say they are suspected of being tied to autism. Many of these papers are in areas of research that are just beginning. Many of them involve homogeneous groups (for example, all the participants are Mexican-American migrant workers) which makes issues of genetics and heredity very difficult to account for. Many involve parents self-reporting by filling out surveys rather than having the children examined by professionals.
Let’s be fair. These are the very beginnings of research. You’ll need to do all sorts of rigorous testing and consideration to make real connections. Of course more research is needed. And it’s important that we keep that in mind as we move forward.
(Though, of course, no one else will.)

Part Four: The Press Release

The op-ed is about publicity so it’s the beginning of the problem. But it gets worse. A press release comes out with the list of ten chemicals and already the twisting starts. These are chemicals suggested for further research, but suddenly they’re a ”List of the Top Ten Toxic Chemicals Suspected to Cause Autism and Learning Disabilities.” This, unsurprisingly, is the headline you’ll see all over the internet when news organizations report on the press release. Already it’s turned from suggestions for research into a watchlist.
It gets worse. The press release has this second headline:
The editorial was published alongside four other papers — each suggesting a link between toxic chemicals and autism.
No, actually that’s not at all accurate.
Let’s start with the first paper, which examines the possibility of a connection between maternal smoking and autism. What’s their conclusion?
The primary analyses indicated a slightly inverse association with all ASDs[.]
What does that mean? Among the autistic kids vs. regular kids, there was actually LESS maternal smoking in the autism group. The paper does point out that when it comes to “subgroups,” for instance high-functioning ASD or Asperger’s, there may be a possibly positive relationship. But there are so many caveats I can’t even get to them all. Let’s just take this one:
The ASD subgroup variables were imperfect, relying on the child’s access to evaluation services and the documentation by a myriad of community providers, rather than direct clinical observation.
This means that when they’re saying some groups of ASD kids may have this relationship, they didn’t actually classify these kids. They never saw these kids. They’re relying on data collected by other people. Not even by a consistent set of people. It comes from 11 different states and who knows how many providers. Who’s to say how accurate any of it is. And who’s to say whether these kids are correctly classified at their particular place on the spectrum.
So take all that with a whole jar full of salt and you’re still looking at, overall, no connection with smoking. If anything, the data would indicate smoking has LESS autism rather than more.
After this there are 2 papers on the same chemical. One of them does not contain the word “autism” anywhere. (One of its references has it, but nowhere does it appear in the text of their paper.) The second paper is better. It focuses on the chemical’s effects in particular processes which have been linked to autism. This is very micro-scale science, there are no people involved, just cells and chemicals. It’s important research, but there’s a long stretch between cellular interactions and a person’s diagnosis. It didn’t involve any analysis with autistic individuals. This is certainly the most useful paper of the bunch by a long shot, but it still just sets the stage for further research.
The fourth paper is a review. That means it asserts no new information but summarizes the research on a particular issue, specifically pesticides and autism. Technically I suppose it does assert a link, but none of this is new information.
So I think we’ve pretty much destroyed the headline in that press release. There were not 4 articles suggesting a connection between chemicals and autism.
Is it likely that the writers who take this press release and write articles on it are going to read the papers it cites? Are they going to realize that what they’re saying isn’t actually true? They should. Of course they should. But they don’t.
This list has chemicals suspected of being tied to neurological development. And we should just leave it at that. It’s not that they shouldn’t be studied. They should. But we shouldn’t be throwing out buzzwords like ADHD and Autism when the research doesn’t show any firm data.

Part Five: News Articles

This is a process, though. First research, then op-ed, then press release and finally news articles. So what’s the headline of our news article? “Top 10 Chemicals Most Likely to Cause Autism and Learning Disabilities.” Guilty of serious fearmongering, no? A more accurate title may be: Researchers propose list of chemicals potentially tied to neurological development for further study. But I doubt anyone’s going to write that.
The article itself, to be fair, is full of caveats. The reasons for the increase in autism are “controversial.” There is a “gap in the science.”  But then you get a sentence like this:
But clearly, there is more to the story than simply genetics, as the increases are far too rapid to be of purely genetic origin.
Clearly? Clearly says who? What source says it’s too rapid? The author certainly isn’t a reliable source. She is Robyn O’Brien, a writer for Prevention who posted this article. Her scientific credentials are nonexistent. She is a former financial analyst who now writes about the food industry. She has an MBA, and her undergraduate was in French and Spanish.
Full disclosure: I have a B.S. in Biochemistry, but I feel I’m unqualified to write this article. I’d much rather it be written by someone with a PhD. I’m married to a PhD, which has given me a lot more exposure to science since leaving school, but I fully acknowledge that I shouldn’t be the one doing this. I know how to read a scientific article and examine its conclusions, but I certainly am not someone who can tell you if their methods and analysis are correct.
But I’m talking because there aren’t enough people talking about it. Because the PhD’s aren’t generally science writers. They are scientists. They write about their research in journals, not in the newspaper. And certainly not on a blog for a healthy living magazine.
The author goes on to restate the inaccurate subheadline of the press release verbatim.
In the end she suggests things like buying organic produce, opening your windows and buying BPA-free products.
This is part 5 of our process, but it’s where many of us start. Many of us will only read this article and not the press release or the op-ed or the research papers. Most of us aren’t qualified to do so, all we have is this article. Well, we have that and what other people tell us. Which leads us to our next step.

Part Six: Readers

The article is frustrating, but I can only get so mad. She is saying what the scientists told her to say. She has even included some cautionary language. The problem is that when writing for laymen, you have to be careful.
And with AUTISM? You have to be really careful. Just for you I’m going to venture into the comments to this article to show you how people have responded.
–How about we quit injecting our kids with aluminum, formaldehyde and the rest of the toxic stew that they call vaccines — we bypass every natural defense our bodies have (skin, saliva, stomach acid) to put these things directly in the blood stream.
–Thank you Robyn for always providing sound information to continue guiding our decisions.
–What about heavy metals like Arsenic that are trapped in soils that our “organic” brown rice is growing in to be made into brown rice syrup to sweeten organic foods and baby formula? Not to mention the reports coming in regarding the radiation and contamination from Fukushimi that has reached the west coast an is spreading across this country in the produce and even the pollen…
–Unvaccinated children are some of the healthiest little people on the planet. As far as the Autism link, who really knows but why risk it.
–Thank you for this information. It confirms to me that we should keep doing what we are doing. It also helps me to enforce our no shoes policy in our home. Some people are so disrespectful and just don’t take them off and I hate to sound like a nag and ask even though they already know its what we prefer.
Thankfully there are some people in there who take the writer to task, but how is a reader to trust any one commenter over another? You have no way of knowing from a comment what someone’s experiences or qualifications are.
There’s a reason we need responsible scientific reporting. I’m all for the open dissemination of information, but I’m also aware of what happens when people read something they don’t understand.
autism FB The Whole Truth About Autism
I encountered this FB conversation the other day. Usually I overlook such things but I could not help myself. I jumped in. I tried hard to be polite and present facts. When all that was over, no one was convinced. The response?
autism FB 2 The Whole Truth About Autism
Enough articles on vaccines and people are scared even without evidence. Enough headlines and people don’t bother reading articles. It doesn’t matter how much is retracted or debunked, the damage is done.
We need responsible science reporting. We need responsible reporting, period. I’ve seen plenty of lazy articles on Supreme Court opinions that lead me to read the opinion myself only to realize that they’ve stated the conclusions all wrong.
I don’t want to go on all day, but I do feel like it’s important for us to put our foot down and demand better.
We aren’t all scientists. But we can ask for science writers with the appropriate qualifications. We can ask for links and citations in their articles. (I spent quite some time tracking everything down for this post, and luckily I’m relatively familiar with looking up scientific articles online.) We can ask for articles that show failed connections. It doesn’t all have to be “Autism linked to X” there’s plenty of “Autism not linked to Y” that happens in these studies but you never see that, do you?
As for us laymen, we have to find our own trusted experts. Ask your pediatrician. And if your pediatrician’s not qualified (most of them are MD’s but not PhD’s) ask them if they have a trusted source. Track down specialists in Autism with PhD’s and ask them what they think of the research. Find reliable books and articles and spread them to your friends. We can’t necessarily do a lot, but we can do our part to stop the spread of misinformation and demand better.


These views are the opinion of the author and do not necessarily either reflect or disagree with those of the DXS editorial team.
—————————————————————
We also suggest

Vaccination attitudes are contagious

The power of social ties may be stronger than you think.

by Tara Haelle Continue reading

Double Xpression: Liz Neeley, Science Communicator Extraordinaire

Liz Neeley: Science communicator extraordinaire
and lover of fine fashion… and bread.

Liz Neeley is the assistant director at COMPASS where she helps develop and lead the communications trainings for scientists, and specializes in the social media and multimedia components of their workshops and outreach efforts. Before joining COMPASS, Liz studied the evolution and visual systems of tropical reef fishes at Boston University. After grad school, she helped communities and researchers in Fiji and Papua New Guinea connect their knowledge of local coral reefs ecosystems to the media. She also dabbled in international science policy while working on trade in deep-sea corals. Liz is currently based in Seattle, at the University of Washington.  You can find Liz on Twitter (@LizNeeley) and on Google+.  Also check our her passion projects, ScienceOnline Seattle and her SciLingual hangout series.  






DXS: First, can you give us a quick overview of what your scientific background is and your current connection to science?
I was one of those kids who knew from a really young age what they wanted to be, and that was a fish biologist.  Sea turtles, dolphins – no way – I wanted to study fish. My mom actually found an old picture I drew when I was in third grade about what I wanted to be when I grew up: it was me in a lab coat, holding a clipboard, and tanks of aquaria behind me. 

You combine this with the fact that I am also a really stubborn person, and I just wanted to do science straight through all my schooling.  Not just the coursework either – I did an NSF young scholars program in high school, was the captain of the engineering team, and, of course, was a mathlete. 

I did my undergraduate work in marine biology at the University of Maryland.  I did three years of research there on oyster reef restoration, and then went straight into my PhD at Boston University, where I studied the evolution of color patterns and visual systems in wrasses and parrotfish.

I actually did not finish my PhD.  Life sort of knocked me sideways, and instead of finishing my PhD, I ended up taking a masters, and then going into the non-profit world.  At first, I mostly worked on coral conservation in Fiji and Papua New Guinea, and I did a big project on deep sea corals. 

After I left grad school, I started a 20-hour per week internship at an NGO called SeaWeb.  Vikki Spruill, who was the founder and president, has killer instincts and a passion for women’s high fashion that I share. She had noticed coral jewelry coming down the runway in Milan, Paris, and NY. People just didn’t have any idea that these pieces of jewelry were actually animals, much less that they were deep sea corals. 

So we launched a campaign called “Too Precious to Wear,” which partnered with high-end fashion and luxury designer to create alternatives to these deep sea corals – celebrating coral but not actually using it.  The Tiffany & Co. Foundation was our major partner, and we got to throw a breakfast at Tiffany’s that brought in fashion editors from Mademoiselle and Vogue.  

Everyone always dismisses women’s fashions as shallow and meaningless, but this ended up being this huge lever that got a lot of attention for deep sea coral conservation, and my piece was the science that pinned it all together. I got a taste of the international policy component of that as well, and headed to the Netherlands for CITES (the Convention on International Trade in Endangered Species) as part of the work.  I knew the science, but certainly helped that I knew how to pronounce the names of the designers too – opportunities like that to bridge cultures that seem foreign to each other are tremendously powerful. 

I currently work at COMPASS, which is an organization that works at the intersection of science, policy, and communication/media.  Our tagline is “helping scientists find their voices and bringing science into the conversation.” For my part, this means, I teach science communications trainings around the country, helping researchers understand how social media works, how reporters find their stories, and how to overcome some of the obstacles that scientists often put in their own way when they talk about their work. 

What I love about this work so much is that it keeps me in the science community – around people who are pursuing tough questions. That is how my brain works, it is how my soul works, and I want to be a part of it.  The power of this for me is to be able to take in all of this knowledge that is generated by these scientists and help connect it to the broader world.  I feel like this is the best contribution I can make.     

DXS: What ways do you express yourself creatively that may not have a single thing to do with science?

I am a pretty artistic person – or at least I think of myself as a pretty artistic person!  My creative outlets usually involve some kind of graphic design.  I am always giving presentations for my work, and I constantly ask “what do my slides look like, and am I telling a good story?” I so lucky that I get to spend a lot of time thinking about imagery, visual storytelling, and how people react to art or data visualization. 

I also paint and draw (though I wouldn’t really share those) and I cook.  I am actually doing a bread baking experiment this year where I am trying out a different type of bread recipe every weekend. 

It can be really funny because sometimes, if it has been a really stressful week, I will look for a recipe that really needs to be punched down or kneaded for a long time. It’s a good workout too! And then we have this amazing bread every weekend.  It is all about the aesthetics for me – I host dinner parties, bake, have a great garden – all of that is sort of my own creative outlet.

Some experimental results from Liz’s bread project.  
DXS: What is your favorite bread?
The delicious baguette
LN: Oh, the baguette. I made my own for the first time last weekend and it was really fantastic! I realize that baking is one of these things that, if you want to do it properly, you have to be very precise. You should weigh the ingredients. But I’m precise in the rest of my life. When it is the weekend and I am having fun, I kind of love it when the flour is just flying everywhere.  As a result, my loaves are a little bit mutated, or just not quite right, but they are delicious!  Some of my other favorites also includes a great focaccia (the recipe for it is below!).
DXS: Do you find that your scientific background informs your creativity, even though what you do may not specifically be scientific?

Yes, absolutely.  It’s funny because when you asked the question about my creative outlets that have nothing to do with science, it was not entirely easy to answer.  You know, science is who I am – it permeates everything I do.  When I am baking the bread, I am thinking about the yeast and fermentation.  When I am painting, I am thinking about color theory and visual perception – after all that would have been what my PhD was in! 

Speaking of color theory, Joanne Manaster recently shared a “how good is your color vision?” quiz. I took that test immediately to see how I would do. That lead me on this interesting exploration around the literature, and I read one theory that Van Gogh might have had a certain type of color blindness.  I love this question of how our brains interact with the world. In animal behavior the concept is called “umwelt” – each species has a unique sensory experience of the environment. I like to think about how that applies to individual people to a smaller degree.

I think about this all the time – science, creativity, art, aesthetics – it is all one beautiful and amazing thing to me.

DXS: Have you encountered situations in which your expression of yourself outside the bounds of science has led to people viewing you differently–either more positively or more negatively?

I accept the fact that, especially when it comes to strangers, we make up stories based on what we see – clothes, hair, etc.  I know that this happens to me as well.  When we talk about femininity, it’s no secret that I am a girly girl.  I wear makeup and heels. That’s how I feel most like myself, how I feel best. I know that this doesn’t sit well with everybody, but that’s ok. I like to think that I hold my own. Give me enough time to speak my piece and I can back it up. I’ve got an interesting career, I am a geek, and it is not hard for me to connect with people once we start talking.

In science we say that we don’t have a dress code, but the reality is that we do. Maybe it’s unspoken, and sure it is not the same as you see in the business world, but when you look different from how everyone else looks, people do want comment on it. I don’t feel like it is particularly negative in my case, and I feel that it doesn’t impede me. What is most exciting is that it often opens up conversation – mostly with other women who say “oh I really like your dress, I’ve been wearing more dresses lately!” 

When I was an undergrad, I was kind of oblivious to the whole dress code thing.  One day, when I was in the lab, I was wearing this pink, strappy sundress, tied up the back, and these stupid platform sandals that were really tall (clearly not appropriate lab gear).  I was scrubbing out this 100-gallon oyster tank and my advisor happened to walk by and he sees me doing this. I remember freezing – all of the sudden I was afraid he was going to mock me or lecture me, but he just said, “Oh, Liz… Keep on.”

My graduate advisor was the same way – he acknowledged who I am and didn’t bother about how I dress. We didn’t avoid the topic.  It just wasn’t an issue. I hope that other women can have that same experience. It doesn’t matter if you are a tomboy or a girly-girl.  I don’t care – I am not judging you. You don’t have to look like me because I am in a dress.   

This is why I love this #IAmSciencememe, and the whole “be yourself” mentality. And that is what I am going to do. I’ve decided to be myself. I accept the fact that not everyone will like the look of me.  But, I think that we will eventually get to the point where we understand that science can be presented in lots of different ways.


DXS: Have you found that your non-science expression of creativity/activity/etc. has in any way informed your understanding of science or how you may talk about it or present it to others?

For me, my job with COMPASS really is sitting at this nexus of asking how we share science with people who aren’t intrinsically fascinated by it or connected to it.  This is very much a ripe field for thinking about creative expression.  Mostly, we come at it in terms of verbal presentations, storytelling and written materials, but then I specialize in the social media and multimedia components.  I am always thinking about everything I am reading and seeing – news, art, music, fiction – and how we can apply what resonates with others in these non-science realms.  It is very much a two-way thing; my science informs my creativity and my creativity informs my science.  That makes it really fulfilling and exciting for me.

I see this in terms of the ability to make connections.  When I am standing up in front of a group of researchers doing a social media training, I am making pop-culture references, alluding to literary works, quoting song lyrics.  When you get it right, you can see someone’s eyes light up.  It’s just another way to connect – people sit up and pay attention if you can make a meaningful reference to the artist they love or the book they just read.

One of the questions we always use in our trainings is “so what?” So you are telling me about your science, but why should I care?  Miles Davis has a famous song “So What?” and we play that in the background. It makes people smile. It makes it memorable. I love that. I really like this idea that we should be using the fullness of who we are and our creative selves, including all of the sensory modalities, to talk about the very abstract and difficult scientific topics we care about so much.


(DXS editor’s side note: A portion of the previous paragraph was delivered to me in song. What’s not to smile about?!?!)
DXS: How comfortable are you expressing your femininity and in what ways? How does this expression influence people’s perception of you in, say, a scientifically oriented context?

I feel very comfortable in my own skin, and who I am and where I come from does tend to be a classically feminine look (at least in terms of clothing choices and how I wear my hair).  I am never quite certain the exact definition of “femininity”, but I don’t think how I look so much influences people’s perception of me as much as it opens up opportunities for us to discuss gender and personality and science. 

 
Part of what I do for my work is to help scientists understand that in journalism, we need characters.  So, I have the obligation to walk my talk – we are all the main characters in our own lives and we have to live with that and be true to that.

It brings up interesting questions of personality and privacy. I feel pretty comfortable talking about my clothes and my art and my dogs and my bread baking – but I also know that a lot of people don’t want that type of stuff out there. I like the challenge of helping them tell their own science stories and shine through as interesting people in a way that is authentic and represents who they are in a way that works for them. 

DXS: Do you think that the combination of your non-science creativity and scientific-related activity shifts people’s perspectives or ideas about what a scientist or science communicator is? If you’re aware of such an influence, in what way, if any, do you use it to (for example) reach a different corner of your audience or present science in a different sort of way?

Sure, I think that I sometimes surprise people.  For example, in the world of communications and journalism, we are seeing more and more that coding and programming has great value. To just look at me, you might not believe that I geek out over altmetrics and that I miss using MatLab.

It suprises people when they find this out, and I sort of like that. I know what it feels like to walk into a room and to be dismissed. I relish these opportunities because I consider them a challenge. Instead of feeling offended (though it can get tiring), my approach is thinking, “Guess what! I have something interesting to say, and you and I are actually going to connect, even though you don’t see it yet.” 

I think that this sort of willingness to interact is something I try to help the scientists that I work with to understand.  Maybe you think that you are going to be met with great opposition toward some subject like climate change, but if you have the willingness to approach it without assuming the worst, it opens new opportunties. I’m no Pollyanna, but I think relentless optimism and a commitment to finding common ground with others is very effective.    

When I introduce social media to scientists, it has changed a lot over the last three years, but there is still a lot of skepticism and some outright scorn for “all those people online.” I like to encourage taking a step back from that in order to reveal all of the awesome things going on online and the ways you might engage.  I truly enjoy the process of turning skeptics into something other than skeptics – I might not change them into believers, but they will at least be surprised and interested onlookers. 


Liz Neeley’s Favorite Focaccia

INGREDIENTS:

Scant 4 cups white bread flour

1 tablespoon salt

Scant 1/2 cup olive oil

1 packet of active dry yeast

1 1/4 cups warm water

Favorite olives, roughly chopped if you prefer

Handful of fresh basil

TIME:

Start this mid-afternoon (between 3 and 4 hours before you want to eat it, depending on how fast you are in the kitchen)

RECIPE:

1.      In a large bowl, combine the flour and salt with 1Ž4 cup of the olive oil, the yeast & the water. Mix with your hands for about 3 minutes.

2.     Lightly dust your countertop with flour and knead your dough for 6 minutes. Enjoy your arm workout and stress relief exercise! 

3.     The dough will be pretty sticky. Put it back in the bowl, cover it with a damp cloth, and let stand at room temperature for 2 hours.

4.     Mix 1Ž2 or more of your olives and all the basil into the dough, and try to get them evenly distributed. It won’t be perfect, but it will be delicious.

5.     Dump the dough onto a lined baking sheet. Flatten it with your hands until it’s a big rectangle about 1″/2.5cm thick. Slather with olive oil. Let rise for 1 hour.

6.     Preheat your oven to 425°F/220°C

7.     Sprinkle with flaky sea salt and drizzle with more olive oil if you want. Bake for 25 minutes or until golden.

8.     Make your neighbors jealous with the amazing smell of baked bread wafting from your house.

9.     Enjoy!