Literal XX Xplainer: How we can live with two X chromosomes

This cat also haz those two chromosomes 
to blame for that splotch on its face.
By Emily Willingham, DXS managing editor

We are “Double X Science” because we target evidence-based information to women, most of whom carry two X chromosomes, although exceptions exist. Some women carry a single X chromosome, and some people can be XY and develop and/or identify as female. That’s one reason we mention “the woman in you” here at Double X Science.

But today, I’m writing about those of us who have at least two X chromosomes. You may know that usually, carrying around a complete extra chromosome can lead to developmental differences, health problems, or even fetal or infant death. How is it that women can walk around with two X chromosomes in each body cell–and the X is a huge chromosome–yet men get by just fine with only one? What are we dealing with here: a half a dose of X (for men) or a double dose of X (for women)?

X chromosome
(Source)
The answer? Women are typically the ones engaging in what’s known as “dosage compensation.” To manage our double dose of X, each of our cells shuts down one of the two X chromosomes it carries. The result is that we express the genes on only one of our X chromosomes in a given cell. This random expression of one X chromosome in each cell makes each woman a lovely mosaic of genetic expression (although not true genetic mosaicism), varying from cell to cell in whether we use genes from X chromosome 1 or from X chromosome 2.

Because these gene forms can differ between the two X chromosomes, we are simply less uniform in what our X chromosome genes do than are men. An exception is men who are XXY, who also shut down one of those X chromosomes in each body cell; women who are XXX shut down two X chromosomes in each cell. The body is deadly serious about this dosage compensation thing and will tolerate no Xtra dissent.

If we kept the entire X chromosome active, that would be a lot of Xtra gene dosage. The X chromosome contains about 1100 genes, and in humans, about 300 diseases and disorders are linked to genes on this chromosome, including hemophilia and Duchenne muscular dystrophy. Because males get only one chromosome, these X-linked diseases are more frequent among males–if the X chromosome they get has a gene form that confers disease, males have no backup X chromosome to make up for the deficit. Women do and far more rarely have X-linked diseases like hemophilia or X-linked differences like color blindness, although they may be subtly symptomatic depending on how frequently a “bad” version of the gene is silenced relative to the “good” version.

The most common example of the results of the random-ish gene silencing XX mammals do is the calico or tortoiseshell cat. You may have heard that if a cat’s calico, it’s female. That’s because the cat owes its splotchy coloring to having two X chromosome genes for coat color, which come in a couple of versions. One version of the gene results in brown coloring while the other produces orange. If a cat carries both forms, one on each X, wherever the cells shut down the brown X, the cat is orange. Wherever cells shut down the orange X, the cat is brown. The result? The cat can haz calico. 

Mary Lyon (Source)
Cells “shut down” the X by slathering it with a kind of chemical tag that makes its gene sequences inaccessible. This version of genetic Liquid Paper means that the cellular machinery responsible for using the gene sequences can’t detect them. The inactivated chromosome even has a special name: It’s called a Barr body. The XXer who developed a hypothesis to explain how XX/XY mammals compensate for gene dosage is Mary Lyon, and the process of silencing an X by condensing it is fittingly called lyonization. Her hypothesis, based on observations of coat color in mice, became a law–the Lyon Law–in 2011.


Barr bodies (arrows).
(Source)
Yet the silencing of that single chromosome in each XX cell isn’t total. As it turns out, women don’t shut down the second X chromosome entirely. The molecular Liquid Paper leaves clusters of sequences available, as many as 300 genes in some women. That means that women are walking around with full double doses of some X chromosome genes. In addition, no two women silence or express precisely the same sequences on the “silenced” X chromosome. 

What’s equally fascinating is that many of the genes that go unsilenced on a Barr body are very like some genes on the Y chromosome, and the X and Y chromosomes share a common chromosomal ancestor. Thus, the availability of these genes on an otherwise silenced X chromosome may ensure that men and women have the same Y chromosome-related gene dosage, with men getting theirs from an X and a Y and women from having two X chromosomes with Y-like genes.  

Not all genes expressed on the (mostly) silenced X are Y chromosome cross-dressers, however. The fact is, women are more complex than men, genomically speaking. Every individual woman may express a suite of X-related genes that differs from that of the woman next to her and that differs even more from that of the man across the room. Just one more thing to add to that sense of mystery and complexity that makes us so very, very double X-ey.


[ETA: Some phrases in this post may have appeared previously in similar form in Biology Digest, but copyright for all material belongs to EJW.]

Are your children always on your mind? They may be IN your mind

Hmm. Do I have any cells in there?
On Mother’s Day this year, we told you why, if you have biological children, those children are literally a part of you for life thanks to a phenomenon called microchimerism. When a woman is pregnant, some of the fetal cells slip past the barrier between mother and fetus and take up residence in the mother. What researchers hadn’t turned up in humans before now was that some of those cells can end up in the mother’s brain. Once there, according to a study published today in PLoS ONE, they can stick around for decades and, the researchers suggest, might have a link to Alzheimer’s disease. Note that is a big “might.”

The easiest way to tell if a fetal cell’s made it into a maternal tissue is to look for cells carrying a Y chromosome or a Y gene sequence (not all fetuses developing as male carry a Y chromosome, but that’s a post for another time). As you probably know, most women don’t carry a Y chromosome in their own cells (but some do; another post for another time). In this study, researchers examined postmortem brain tissue from 26 women who had no detectable neurological disease and 33 women who’d had Alzheimer’s disease; the women’s ages at death ranged from 32 to 101. They found that almost two thirds (37) of all of the women tested had evidence of the Y chromosome gene in their brains, in several brain regions. The blue spots in the image below highlight cells carrying these “male” genes a woman’s brain tissue.

Photo Credit: Chan WFN, Gurnot C, Montine TJ, Sonnen JA, Guthrie KA, et al. (2012)
Male Microchimerism in the Human Female Brain. 
PLoS ONE 7(9): e45592. doi:10.1371/journal.pone.0045592

The researchers also looked at whether or not these blue spots were more (or less) frequent in the brains of women with Alzheimer’s disease compared to women who’d had no known neurological disease. Although their results hint at a possible association, it wasn’t significant. Because the pregnancy history of the women was largely unknown, there’s no real evidence here that pregnancy can heighten your Alzheimer’s risk or that being pregnant with or bearing a boy can help or hinder. As I discuss below, you can end up with some Y chromosome-bearing cells without ever having been pregnant.

Also, age could be an issue. Based on the reported age ranges of the group, the women without Alzheimer’s were on average younger at death (70 vs 79), with the youngest being only 32 (the youngest in Alzheimer’s group at death was 54). No one knows if the women who died at younger ages might later have developed Alzheimer’s. 

Indeed, most of this group–Alzheimer’s or not–had these Y-chromosome cells present in the brain. The authors say that 18 of the 26 samples from women who’d had no neurologic disease were positive for these “male” cells–that’s 69%–while 19 of the 33 who had Alzheimer’s were. That’s 58%. In other words, a greater percentage of women who’d not had Alzheimer’s in life were carrying around these male-positive cells compared to women who had developed Alzheimer’s. The age difference might also matter here, though, if these microchimeric cells tend to fade with age, although the researchers did get a positive result in the brain of a woman who was 94 when she died.

Thus, the simple fact of having male-positive cells (ETA: or not enough of them) in the brain doesn’t mean You Will Develop Alzheimer’s, which is itself a complex disease with many contributing factors. The researchers looked at this potential link because some studies have found a higher rate of Alzheimer’s among women who’ve been pregnant compared to women who have not and an earlier onset among women with a history of pregnancy. The possible reasons for this association range from false correlation to any number of effects of pregnancy, childbearing, or parenting.

Nothing about this study means that migration of fetal cells to the brain is limited to cells carrying Y chromosomes. It’s just that in someone who is XX, it’s pretty straightforward to find a Y chromosome gene. Finding a “foreign” X-linked gene in an XX person would be much more difficult. Also, a woman doesn’t have to have borne a pregnancy to term to have acquired these fetal cells. As the authors observe, even women without sons can have these Y-associated cells from pregnancies that were aborted or ended prematurely or from a “vanished” male twin in a pregnancy that did go to term. 

In fact, a woman doesn’t even have to have ever been pregnant at all to be carrying some cells with Y chromosomes. Another way you can end up with Y chromosome cells in an XX chromosome body is–get this–from having an older male sibling who, presumably, left a few cellular gifts behind in the womb where you later developed. As the oldest sibling, I can only assume I could have done the same for the siblings who followed me. So, if you’ve got an older sibling and have been pregnant before–could you be a double microchimera? 

But wait. You could even be a triple microchimera! This microchimerism thing can be a two-way street. If you’re a woman with biological children, those children already carry around part of you in the nuclear DNA you contributed and all of the mitochondria (including mitochondrial DNA) in all of their cells. Yes, they get more DNA from you than from the father. But they might also be toting complete versions of your cells, just as you have cells from them, although fetus–>mother transfer is more common than mother–>fetus transfer. The same could have happened between you and your biological mother. If so, a woman could potentially be living with cells from her mother, older sibling, and her children mixed in with her own boring old self cells.

The triple microchimera thing might be a tad dizzying, particularly the idea that you could be walking around with your mother’s and sibling’s cells hanging out in You, a whole new level of family relationships. But if you’re a biological mother, perhaps you might find it comforting to know that a cellular part of you may accompany your child everywhere, even as your child is always on your mind–and possibly in it, too.

Biology Explainer: The big 4 building blocks of life–carbohydrates, fats, proteins, and nucleic acids

The short version
  • The four basic categories of molecules for building life are carbohydrates, lipids, proteins, and nucleic acids.
  • Carbohydrates serve many purposes, from energy to structure to chemical communication, as monomers or polymers.
  • Lipids, which are hydrophobic, also have different purposes, including energy storage, structure, and signaling.
  • Proteins, made of amino acids in up to four structural levels, are involved in just about every process of life.                                                                                                      
  • The nucleic acids DNA and RNA consist of four nucleotide building blocks, and each has different purposes.
The longer version
Life is so diverse and unwieldy, it may surprise you to learn that we can break it down into four basic categories of molecules. Possibly even more implausible is the fact that two of these categories of large molecules themselves break down into a surprisingly small number of building blocks. The proteins that make up all of the living things on this planet and ensure their appropriate structure and smooth function consist of only 20 different kinds of building blocks. Nucleic acids, specifically DNA, are even more basic: only four different kinds of molecules provide the materials to build the countless different genetic codes that translate into all the different walking, swimming, crawling, oozing, and/or photosynthesizing organisms that populate the third rock from the Sun.

                                                  

Big Molecules with Small Building Blocks

The functional groups, assembled into building blocks on backbones of carbon atoms, can be bonded together to yield large molecules that we classify into four basic categories. These molecules, in many different permutations, are the basis for the diversity that we see among living things. They can consist of thousands of atoms, but only a handful of different kinds of atoms form them. It’s like building apartment buildings using a small selection of different materials: bricks, mortar, iron, glass, and wood. Arranged in different ways, these few materials can yield a huge variety of structures.

We encountered functional groups and the SPHONC in Chapter 3. These components form the four categories of molecules of life. These Big Four biological molecules are carbohydrates, lipids, proteins, and nucleic acids. They can have many roles, from giving an organism structure to being involved in one of the millions of processes of living. Let’s meet each category individually and discover the basic roles of each in the structure and function of life.
Carbohydrates

You have met carbohydrates before, whether you know it or not. We refer to them casually as “sugars,” molecules made of carbon, hydrogen, and oxygen. A sugar molecule has a carbon backbone, usually five or six carbons in the ones we’ll discuss here, but it can be as few as three. Sugar molecules can link together in pairs or in chains or branching “trees,” either for structure or energy storage.

When you look on a nutrition label, you’ll see reference to “sugars.” That term includes carbohydrates that provide energy, which we get from breaking the chemical bonds in a sugar called glucose. The “sugars” on a nutrition label also include those that give structure to a plant, which we call fiber. Both are important nutrients for people.

Sugars serve many purposes. They give crunch to the cell walls of a plant or the exoskeleton of a beetle and chemical energy to the marathon runner. When attached to other molecules, like proteins or fats, they aid in communication between cells. But before we get any further into their uses, let’s talk structure.

The sugars we encounter most in basic biology have their five or six carbons linked together in a ring. There’s no need to dive deep into organic chemistry, but there are a couple of essential things to know to interpret the standard representations of these molecules.

Check out the sugars depicted in the figure. The top-left molecule, glucose, has six carbons, which have been numbered. The sugar to its right is the same glucose, with all but one “C” removed. The other five carbons are still there but are inferred using the conventions of organic chemistry: Anywhere there is a corner, there’s a carbon unless otherwise indicated. It might be a good exercise for you to add in a “C” over each corner so that you gain a good understanding of this convention. You should end up adding in five carbon symbols; the sixth is already given because that is conventionally included when it occurs outside of the ring.

On the left is a glucose with all of its carbons indicated. They’re also numbered, which is important to understand now for information that comes later. On the right is the same molecule, glucose, without the carbons indicated (except for the sixth one). Wherever there is a corner, there is a carbon, unless otherwise indicated (as with the oxygen). On the bottom left is ribose, the sugar found in RNA. The sugar on the bottom right is deoxyribose. Note that at carbon 2 (*), the ribose and deoxyribose differ by a single oxygen.

The lower left sugar in the figure is a ribose. In this depiction, the carbons, except the one outside of the ring, have not been drawn in, and they are not numbered. This is the standard way sugars are presented in texts. Can you tell how many carbons there are in this sugar? Count the corners and don’t forget the one that’s already indicated!

If you said “five,” you are right. Ribose is a pentose (pent = five) and happens to be the sugar present in ribonucleic acid, or RNA. Think to yourself what the sugar might be in deoxyribonucleic acid, or DNA. If you thought, deoxyribose, you’d be right.

The fourth sugar given in the figure is a deoxyribose. In organic chemistry, it’s not enough to know that corners indicate carbons. Each carbon also has a specific number, which becomes important in discussions of nucleic acids. Luckily, we get to keep our carbon counting pretty simple in basic biology. To count carbons, you start with the carbon to the right of the non-carbon corner of the molecule. The deoxyribose or ribose always looks to me like a little cupcake with a cherry on top. The “cherry” is an oxygen. To the right of that oxygen, we start counting carbons, so that corner to the right of the “cherry” is the first carbon. Now, keep counting. Here’s a little test: What is hanging down from carbon 2 of the deoxyribose?

If you said a hydrogen (H), you are right! Now, compare the deoxyribose to the ribose. Do you see the difference in what hangs off of the carbon 2 of each sugar? You’ll see that the carbon 2 of ribose has an –OH, rather than an H. The reason the deoxyribose is called that is because the O on the second carbon of the ribose has been removed, leaving a “deoxyed” ribose. This tiny distinction between the sugars used in DNA and RNA is significant enough in biology that we use it to distinguish the two nucleic acids.

In fact, these subtle differences in sugars mean big differences for many biological molecules. Below, you’ll find a couple of ways that apparently small changes in a sugar molecule can mean big changes in what it does. These little changes make the difference between a delicious sugar cookie and the crunchy exoskeleton of a dung beetle.

Sugar and Fuel

A marathon runner keeps fuel on hand in the form of “carbs,” or sugars. These fuels provide the marathoner’s straining body with the energy it needs to keep the muscles pumping. When we take in sugar like this, it often comes in the form of glucose molecules attached together in a polymer called starch. We are especially equipped to start breaking off individual glucose molecules the minute we start chewing on a starch.

Double X Extra: A monomer is a building block (mono = one) and a polymer is a chain of monomers. With a few dozen monomers or building blocks, we get millions of different polymers. That may sound nutty until you think of the infinity of values that can be built using only the numbers 0 through 9 as building blocks or the intricate programming that is done using only a binary code of zeros and ones in different combinations.

Our bodies then can rapidly take the single molecules, or monomers, into cells and crack open the chemical bonds to transform the energy for use. The bonds of a sugar are packed with chemical energy that we capture to build a different kind of energy-containing molecule that our muscles access easily. Most species rely on this process of capturing energy from sugars and transforming it for specific purposes.

Polysaccharides: Fuel and Form

Plants use the Sun’s energy to make their own glucose, and starch is actually a plant’s way of storing up that sugar. Potatoes, for example, are quite good at packing away tons of glucose molecules and are known to dieticians as a “starchy” vegetable. The glucose molecules in starch are packed fairly closely together. A string of sugar molecules bonded together through dehydration synthesis, as they are in starch, is a polymer called a polysaccharide (poly = many; saccharide = sugar). When the monomers of the polysaccharide are released, as when our bodies break them up, the reaction that releases them is called hydrolysis.

Double X Extra: The specific reaction that hooks one monomer to another in a covalent bond is called dehydration synthesis because in making the bond–synthesizing the larger molecule–a molecule of water is removed (dehydration). The reverse is hydrolysis (hydro = water; lysis = breaking), which breaks the covalent bond by the addition of a molecule of water.

Although plants make their own glucose and animals acquire it by eating the plants, animals can also package away the glucose they eat for later use. Animals, including humans, store glucose in a polysaccharide called glycogen, which is more branched than starch. In us, we build this energy reserve primarily in the liver and access it when our glucose levels drop.

Whether starch or glycogen, the glucose molecules that are stored are bonded together so that all of the molecules are oriented the same way. If you view the sixth carbon of the glucose to be a “carbon flag,” you’ll see in the figure that all of the glucose molecules in starch are oriented with their carbon flags on the upper left.

The orientation of monomers of glucose in polysaccharides can make a big difference in the use of the polymer. The glucoses in the molecule on the top are all oriented “up” and form starch. The glucoses in the molecule on the bottom alternate orientation to form cellulose, which is quite different in its function from starch.

Storing up sugars for fuel and using them as fuel isn’t the end of the uses of sugar. In fact, sugars serve as structural molecules in a huge variety of organisms, including fungi, bacteria, plants, and insects.

The primary structural role of a sugar is as a component of the cell wall, giving the organism support against gravity. In plants, the familiar old glucose molecule serves as one building block of the plant cell wall, but with a catch: The molecules are oriented in an alternating up-down fashion. The resulting structural sugar is called cellulose.

That simple difference in orientation means the difference between a polysaccharide as fuel for us and a polysaccharide as structure. Insects take it step further with the polysaccharide that makes up their exoskeleton, or outer shell. Once again, the building block is glucose, arranged as it is in cellulose, in an alternating conformation. But in insects, each glucose has a little extra added on, a chemical group called an N-acetyl group. This addition of a single functional group alters the use of cellulose and turns it into a structural molecule that gives bugs that special crunchy sound when you accidentally…ahem…step on them.

These variations on the simple theme of a basic carbon-ring-as-building-block occur again and again in biological systems. In addition to serving roles in structure and as fuel, sugars also play a role in function. The attachment of subtly different sugar molecules to a protein or a lipid is one way cells communicate chemically with one another in refined, regulated interactions. It’s as though the cells talk with each other using a specialized, sugar-based vocabulary. Typically, cells display these sugary messages to the outside world, making them available to other cells that can recognize the molecular language.

Lipids: The Fatty Trifecta

Starch makes for good, accessible fuel, something that we immediately attack chemically and break up for quick energy. But fats are energy that we are supposed to bank away for a good long time and break out in times of deprivation. Like sugars, fats serve several purposes, including as a dense source of energy and as a universal structural component of cell membranes everywhere.

Fats: the Good, the Bad, the Neutral

Turn again to a nutrition label, and you’ll see a few references to fats, also known as lipids. (Fats are slightly less confusing that sugars in that they have only two names.) The label may break down fats into categories, including trans fats, saturated fats, unsaturated fats, and cholesterol. You may have learned that trans fats are “bad” and that there is good cholesterol and bad cholesterol, but what does it all mean?

Let’s start with what we mean when we say saturated fat. The question is, saturated with what? There is a specific kind of dietary fat call the triglyceride. As its name implies, it has a structural motif in which something is repeated three times. That something is a chain of carbons and hydrogens, hanging off in triplicate from a head made of glycerol, as the figure shows.  Those three carbon-hydrogen chains, or fatty acids, are the “tri” in a triglyceride. Chains like this can be many carbons long.

Double X Extra: We call a fatty acid a fatty acid because it’s got a carboxylic acid attached to a fatty tail. A triglyceride consists of three of these fatty acids attached to a molecule called glycerol. Our dietary fat primarily consists of these triglycerides.

Triglycerides come in several forms. You may recall that carbon can form several different kinds of bonds, including single bonds, as with hydrogen, and double bonds, as with itself. A chain of carbon and hydrogens can have every single available carbon bond taken by a hydrogen in single covalent bond. This scenario of hydrogen saturation yields a saturated fat. The fat is saturated to its fullest with every covalent bond taken by hydrogens single bonded to the carbons.

Saturated fats have predictable characteristics. They lie flat easily and stick to each other, meaning that at room temperature, they form a dense solid. You will realize this if you find a little bit of fat on you to pinch. Does it feel pretty solid? That’s because animal fat is saturated fat. The fat on a steak is also solid at room temperature, and in fact, it takes a pretty high heat to loosen it up enough to become liquid. Animals are not the only organisms that produce saturated fat–avocados and coconuts also are known for their saturated fat content.

The top graphic above depicts a triglyceride with the glycerol, acid, and three hydrocarbon tails. The tails of this saturated fat, with every possible hydrogen space occupied, lie comparatively flat on one another, and this kind of fat is solid at room temperature. The fat on the bottom, however, is unsaturated, with bends or kinks wherever two carbons have double bonded, booting a couple of hydrogens and making this fat unsaturated, or lacking some hydrogens. Because of the space between the bumps, this fat is probably not solid at room temperature, but liquid.

You can probably now guess what an unsaturated fat is–one that has one or more hydrogens missing. Instead of single bonding with hydrogens at every available space, two or more carbons in an unsaturated fat chain will form a double bond with carbon, leaving no space for a hydrogen. Because some carbons in the chain share two pairs of electrons, they physically draw closer to one another than they do in a single bond. This tighter bonding result in a “kink” in the fatty acid chain.

In a fat with these kinks, the three fatty acids don’t lie as densely packed with each other as they do in a saturated fat. The kinks leave spaces between them. Thus, unsaturated fats are less dense than saturated fats and often will be liquid at room temperature. A good example of a liquid unsaturated fat at room temperature is canola oil.

A few decades ago, food scientists discovered that unsaturated fats could be resaturated or hydrogenated to behave more like saturated fats and have a longer shelf life. The process of hydrogenation–adding in hydrogens–yields trans fat. This kind of processed fat is now frowned upon and is being removed from many foods because of its associations with adverse health effects. If you check a food label and it lists among the ingredients “partially hydrogenated” oils, that can mean that the food contains trans fat.

Double X Extra: A triglyceride can have up to three different fatty acids attached to it. Canola oil, for example, consists primarily of oleic acid, linoleic acid, and linolenic acid, all of which are unsaturated fatty acids with 18 carbons in their chains.

Why do we take in fat anyway? Fat is a necessary nutrient for everything from our nervous systems to our circulatory health. It also, under appropriate conditions, is an excellent way to store up densely packaged energy for the times when stores are running low. We really can’t live very well without it.

Phospholipids: An Abundant Fat

You may have heard that oil and water don’t mix, and indeed, it is something you can observe for yourself. Drop a pat of butter–pure saturated fat–into a bowl of water and watch it just sit there. Even if you try mixing it with a spoon, it will just sit there. Now, drop a spoon of salt into the water and stir it a bit. The salt seems to vanish. You’ve just illustrated the difference between a water-fearing (hydrophobic) and a water-loving (hydrophilic) substance.

Generally speaking, compounds that have an unequal sharing of electrons (like ions or anything with a covalent bond between oxygen and hydrogen or nitrogen and hydrogen) will be hydrophilic. The reason is that a charge or an unequal electron sharing gives the molecule polarity that allows it to interact with water through hydrogen bonds. A fat, however, consists largely of hydrogen and carbon in those long chains. Carbon and hydrogen have roughly equivalent electronegativities, and their electron-sharing relationship is relatively nonpolar. Fat, lacking in polarity, doesn’t interact with water. As the butter demonstrated, it just sits there.

There is one exception to that little maxim about fat and water, and that exception is the phospholipid. This lipid has a special structure that makes it just right for the job it does: forming the membranes of cells. A phospholipid consists of a polar phosphate head–P and O don’t share equally–and a couple of nonpolar hydrocarbon tails, as the figure shows. If you look at the figure, you’ll see that one of the two tails has a little kick in it, thanks to a double bond between the two carbons there.

Phospholipids form a double layer and are the major structural components of cell membranes. Their bend, or kick, in one of the hydrocarbon tails helps ensure fluidity of the cell membrane. The molecules are bipolar, with hydrophilic heads for interacting with the internal and external watery environments of the cell and hydrophobic tails that help cell membranes behave as general security guards.

The kick and the bipolar (hydrophobic and hydrophilic) nature of the phospholipid make it the perfect molecule for building a cell membrane. A cell needs a watery outside to survive. It also needs a watery inside to survive. Thus, it must face the inside and outside worlds with something that interacts well with water. But it also must protect itself against unwanted intruders, providing a barrier that keeps unwanted things out and keeps necessary molecules in.

Phospholipids achieve it all. They assemble into a double layer around a cell but orient to allow interaction with the watery external and internal environments. On the layer facing the inside of the cell, the phospholipids orient their polar, hydrophilic heads to the watery inner environment and their tails away from it. On the layer to the outside of the cell, they do the same.
As the figure shows, the result is a double layer of phospholipids with each layer facing a polar, hydrophilic head to the watery environments. The tails of each layer face one another. They form a hydrophobic, fatty moat around a cell that serves as a general gatekeeper, much in the way that your skin does for you. Charged particles cannot simply slip across this fatty moat because they can’t interact with it. And to keep the fat fluid, one tail of each phospholipid has that little kick, giving the cell membrane a fluid, liquidy flow and keeping it from being solid and unforgiving at temperatures in which cells thrive.

Steroids: Here to Pump You Up?

Our final molecule in the lipid fatty trifecta is cholesterol. As you may have heard, there are a few different kinds of cholesterol, some of which we consider to be “good” and some of which is “bad.” The good cholesterol, high-density lipoprotein, or HDL, in part helps us out because it removes the bad cholesterol, low-density lipoprotein or LDL, from our blood. The presence of LDL is associated with inflammation of the lining of the blood vessels, which can lead to a variety of health problems.

But cholesterol has some other reasons for existing. One of its roles is in the maintenance of cell membrane fluidity. Cholesterol is inserted throughout the lipid bilayer and serves as a block to the fatty tails that might otherwise stick together and become a bit too solid.

Cholesterol’s other starring role as a lipid is as the starting molecule for a class of hormones we called steroids or steroid hormones. With a few snips here and additions there, cholesterol can be changed into the steroid hormones progesterone, testosterone, or estrogen. These molecules look quite similar, but they play very different roles in organisms. Testosterone, for example, generally masculinizes vertebrates (animals with backbones), while progesterone and estrogen play a role in regulating the ovulatory cycle.

Double X Extra: A hormone is a blood-borne signaling molecule. It can be lipid based, like testosterone, or short protein, like insulin.

Proteins

As you progress through learning biology, one thing will become more and more clear: Most cells function primarily as protein factories. It may surprise you to learn that proteins, which we often talk about in terms of food intake, are the fundamental molecule of many of life’s processes. Enzymes, for example, form a single broad category of proteins, but there are millions of them, each one governing a small step in the molecular pathways that are required for living.

Levels of Structure

Amino acids are the building blocks of proteins. A few amino acids strung together is called a peptide, while many many peptides linked together form a polypeptide. When many amino acids strung together interact with each other to form a properly folded molecule, we call that molecule a protein.

For a string of amino acids to ultimately fold up into an active protein, they must first be assembled in the correct order. The code for their assembly lies in the DNA, but once that code has been read and the amino acid chain built, we call that simple, unfolded chain the primary structure of the protein.

This chain can consist of hundreds of amino acids that interact all along the sequence. Some amino acids are hydrophobic and some are hydrophilic. In this context, like interacts best with like, so the hydrophobic amino acids will interact with one another, and the hydrophilic amino acids will interact together. As these contacts occur along the string of molecules, different conformations will arise in different parts of the chain. We call these different conformations along the amino acid chain the protein’s secondary structure.

Once those interactions have occurred, the protein can fold into its final, or tertiary structure and be ready to serve as an active participant in cellular processes. To achieve the tertiary structure, the amino acid chain’s secondary interactions must usually be ongoing, and the pH, temperature, and salt balance must be just right to facilitate the folding. This tertiary folding takes place through interactions of the secondary structures along the different parts of the amino acid chain.

The final product is a properly folded protein. If we could see it with the naked eye, it might look a lot like a wadded up string of pearls, but that “wadded up” look is misleading. Protein folding is a carefully regulated process that is determined at its core by the amino acids in the chain: their hydrophobicity and hydrophilicity and how they interact together.

In many instances, however, a complete protein consists of more than one amino acid chain, and the complete protein has two or more interacting strings of amino acids. A good example is hemoglobin in red blood cells. Its job is to grab oxygen and deliver it to the body’s tissues. A complete hemoglobin protein consists of four separate amino acid chains all properly folded into their tertiary structures and interacting as a single unit. In cases like this involving two or more interacting amino acid chains, we say that the final protein has a quaternary structure. Some proteins can consist of as many as a dozen interacting chains, behaving as a single protein unit.

A Plethora of Purposes

What does a protein do? Let us count the ways. Really, that’s almost impossible because proteins do just about everything. Some of them tag things. Some of them destroy things. Some of them protect. Some mark cells as “self.” Some serve as structural materials, while others are highways or motors. They aid in communication, they operate as signaling molecules, they transfer molecules and cut them up, they interact with each other in complex, interrelated pathways to build things up and break things down. They regulate genes and package DNA, and they regulate and package each other.

As described above, proteins are the final folded arrangement of a string of amino acids. One way we obtain these building blocks for the millions of proteins our bodies make is through our diet. You may hear about foods that are high in protein or people eating high-protein diets to build muscle. When we take in those proteins, we can break them apart and use the amino acids that make them up to build proteins of our own.

Nucleic Acids

How does a cell know which proteins to make? It has a code for building them, one that is especially guarded in a cellular vault in our cells called the nucleus. This code is deoxyribonucleic acid, or DNA. The cell makes a copy of this code and send it out to specialized structures that read it and build proteins based on what they read. As with any code, a typo–a mutation–can result in a message that doesn’t make as much sense. When the code gets changed, sometimes, the protein that the cell builds using that code will be changed, too.

Biohazard!The names associated with nucleic acids can be confusing because they all start with nucle-. It may seem obvious or easy now, but a brain freeze on a test could mix you up. You need to fix in your mind that the shorter term (10 letters, four syllables), nucleotide, refers to the smaller molecule, the three-part building block. The longer term (12 characters, including the space, and five syllables), nucleic acid, which is inherent in the names DNA and RNA, designates the big, long molecule.

DNA vs. RNA: A Matter of Structure

DNA and its nucleic acid cousin, ribonucleic acid, or RNA, are both made of the same kinds of building blocks. These building blocks are called nucleotides. Each nucleotide consists of three parts: a sugar (ribose for RNA and deoxyribose for DNA), a phosphate, and a nitrogenous base. In DNA, every nucleotide has identical sugars and phosphates, and in RNA, the sugar and phosphate are also the same for every nucleotide.

So what’s different? The nitrogenous bases. DNA has a set of four to use as its coding alphabet. These are the purines, adenine and guanine, and the pyrimidines, thymine and cytosine. The nucleotides are abbreviated by their initial letters as A, G, T, and C. From variations in the arrangement and number of these four molecules, all of the diversity of life arises. Just four different types of the nucleotide building blocks, and we have you, bacteria, wombats, and blue whales.

RNA is also basic at its core, consisting of only four different nucleotides. In fact, it uses three of the same nitrogenous bases as DNA–A, G, and C–but it substitutes a base called uracil (U) where DNA uses thymine. Uracil is a pyrimidine.

DNA vs. RNA: Function Wars

An interesting thing about the nitrogenous bases of the nucleotides is that they pair with each other, using hydrogen bonds, in a predictable way. An adenine will almost always bond with a thymine in DNA or a uracil in RNA, and cytosine and guanine will almost always bond with each other. This pairing capacity allows the cell to use a sequence of DNA and build either a new DNA sequence, using the old one as a template, or build an RNA sequence to make a copy of the DNA.

These two different uses of A-T/U and C-G base pairing serve two different purposes. DNA is copied into DNA usually when a cell is preparing to divide and needs two complete sets of DNA for the new cells. DNA is copied into RNA when the cell needs to send the code out of the vault so proteins can be built. The DNA stays safely where it belongs.

RNA is really a nucleic acid jack-of-all-trades. It not only serves as the copy of the DNA but also is the main component of the two types of cellular workers that read that copy and build proteins from it. At one point in this process, the three types of RNA come together in protein assembly to make sure the job is done right.


 By Emily Willingham, DXS managing editor 
This material originally appeared in similar form in Emily Willingham’s Complete Idiot’s Guide to College Biology

Cottoning on to genome duplications

Cotton, courtesy of the USDA.
What do electrons have to do with our ability to spin this into yarn?
Image via Wikimedia Commons.
 
by Chris Gunter, Science Education Editor, DXS

 

Plants are hard. Not in the physical way, but in the genomics way: It’s been estimated that 75% of domesticated plant genomes are polyploid, meaning they have up to 12 sets of each chromosome in every cell. This makes genome sequencing crazily difficult: Each gene segment is represented multiple times, and each one has changes between them, since these organisms multiplied their chromosomes millions of years ago.
Photo of one of the institutions involved, the HudsonAlpha Institute
for Biotechnology (and my employer), through our backyard cotton field.
Credit: Holly Ralston
 
Every genome sequence has errors produced along the way; it’s just a factor of the technology and the scale involved. When you are trying to read the genome of a plant and you see a nucleotide position with multiple bases supposedly reported by the sequencer at that position, how do you know what’s real and what’s error?
 
Enter comparative genomics. Scientists around the world are attacking this problem by sequencing as many different plants as possible and comparing the genomes to each other across evolutionary time. This week, the plant in the spotlight is cotton, or the Gossypium genus. Scientists from 10 countries collaborated to produce a draft genome sequence for Gossypium raimondii, which produces a non-spinnable variety of cotton fiber.
 
The cotton genome produced is much larger than other plants that have been sequenced – poplar, rice, and grapevines – and in this case 61% of its genome size comes from repetitive elements, which are also quite hard to incorporate into a genome sequence. It’s a little like putting together a multi-million piece jigsaw puzzle where over half the picture is blue sky. In the unique parts of the genome are over 37,000 genes, which is at least 10,000 more than humans.
 
By comparing this more complete genome sequence to other plants, the researchers can conclude that what we now know as cotton has gone through multiple transformations. At least 60 million years ago, its ancestors diverged from other plants and went through an abrupt chromosome multiplication, to have the five or six sets of chromosomes we still see today.
 
Then, about 5-10 million years ago, fibers with a structure that allowed them to be spinnable into yarn evolved in some cotton subgroups and not others. To investigate what makes spinnable cotton, the researchers produced some genome sequence for a number of representatives of these subgroups. Intriguingly, they saw linkage between fiber quality and a block of mitochondrial genes that had transported to the nucleus of some cotton strains. Mitochondria are the structures in the cell that take nutrient energy and package it into molecules that cells can use as an energy source.
 
In the case of cotton, the co-opted mitochondrial genes relate to the way cells like ours and those of plants generate those energy-containing molecules, by transport of electrons through certain enzymes (like NADH dehydrogenase for you aficionados). There is no obvious connection between the observations about electrons and the spinnability of cotton, though, leaving open the question: Can this passage of electrons from protein to protein really be involved in allowing our own ancestors to start making clothes from cotton? Now that these genome data have been released, anyone can study them for an answer.
 
The paper is freely available on the website of the journal Nature and is entitled “Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres.” 

Mother’s Day: Part of me forever

Always a part of each other. (Source)

Double X Science’s Chris Gunter, science education and outreach editor, wrote this wonderful post for the Last Word on Nothing. We are featuring it here for Mother’s Day because, as she writes, if you’re a mother, you and your child are part of each other forever–and this time, we mean in a scientific sense.
Source.
This summer I put my Lilkid, as I call him online, on the school bus for the first time ever. Evidently I have “socialized” him enough with other lilkids, because he got on without a backwards glance, ignoring his mother getting all teary and father waving goodbye. He chose a seat and then mouthed through the window with a huge grin, “MOM! I am ON THE SCHOOL BUS! And IT HAS NO SEAT BELTS!!!”
When you have a kid, people tell you various clichés about how your child will be part of you forever. Ladies, in your case, it’s true, and it’s supported by science.
Thanks to a phenomenon called fetal microchimerism, a mother can carry cells from her fetus in her own body for many years after the pregnancy ends. Particularly in the last two decades, microchimerism has been recognized as the norm rather than the exception. We now know that, instead of being separate systems, the mother and fetus leave a number of permanent marks on each other through the trafficking of cells back and forth over the placenta. Fetal stem cells make their way into the mother’s bloodstream and even into her bone marrow, sometimes contributing to her blood supply for the rest of her life.
Source.
Like many parts of having a kid, the consequences of this microchimerism are both good and bad. Fetal cells have been found at sites of injury in the mother while she’s pregnant, or even years later in liver injuries or appendicitis cases, apparently drawn by damage and participating in repair or regeneration. Good news! Fetal cells have also been found in breast cancers much later, again seeming to try and repair the tissue. Thanks, kid!
But the presence of fetal cells is also invoked as the reason why women have more autoimmune disorders, including lupus and thyroiditis, during and years after pregnancy. Immunologists think that this happens essentially because Mom’s immune system eventually realizes that these fetal cells don’t belong to her own body, and attacks them as a result. Hmmm, not great. [However, at least you have some more scientific basis if you hear yourself telling your child, “You are KILLING me!”]
Source.
In fact, testing women’s cells for the presence of the Y chromosome — the “male” chromosome, which females shouldn’t carry — uncovers it in about 30% of the bone marrow of grown women and 47% of cardiac aortas. Even among women who have truly never had a reportable pregnancy, 7% or more would test positive for XY cells. Doubling those numbers to account for fetuses of both sexes further supports the idea that many pregnancies go undetected. It’s not just the mothers standing with me at the bus stop who are microchimeric; these problems and benefits apply to more women than we think.
So as I watched Lilkid pull away into a new stage of independence, this geeky scientist thought about how his cells would literally be part of my body forever, for both good and more challenging times. Then the straight Mom kicked in with a host of more mundane worries: “Great — now I have to go look into this ‘no seat belt on the bus’ thing. Did I pack enough snacks for him to eat?” And so on as the school bus drove off for the first of many mornings.
_____________
Chris Gunter is a geneticist and the Director of Research Affairs at the HudsonAlpha Institute for Biotechnology in Huntsville, Alabama, and a DXS editor. 

Anorexia nervosa, neurobiology, and family-based treatment

Via Wikimedia Commons
Photo credit: Sandra Mann
By Harriet Brown, DXS contributor

Back in 1978, psychoanalyst Hilde Bruch published the first popular book on anorexia nervosa. In The Golden Cage, she described anorexia as a psychological illness caused by environmental factors: sexual abuse, over-controlling parents, fears about growing up, and/or other psychodynamic factors. Bruch believed young patients needed to be separated from their families (a concept that became known as a “parentectomy”) so therapists could help them work through the root issues underlying the illness. Then, and only then, patients would choose to resume eating. If they were still alive.

Bruch’s observations dictated eating-disorders treatments for decades, treatments that led to spectacularly ineffective results. Only about 35% of people with anorexia recovered; another 20% died, of starvation or suicide; and the rest lived with some level of chronic illness for the rest of their lives.

Not a great track record, overall, and especially devastating for women, who suffer from anorexia at a rate of 10 times that of men. Luckily, we know a lot more about anorexia and other eating disorders now than we did in 1978.

“It’s Not About the Food”

In Bruch’s day, anorexia wasn’t the only illness attributed to faulty parenting and/or trauma. Therapists saw depression, anxiety, schizophrenia, eating disorders, and homosexuality (long considered a psychiatric “illness”) as ailments of the mind alone. Thanks to the rising field of behavioral neuroscience, we’ve begun to untangle the ways brain circuitry, neural architecture, and other biological processes contribute to these disorders. Most experts now agree that depression and anxiety can be caused by, say, neurotransmitter imbalances as much as unresolved emotional conflicts, and treat them accordingly. But the field of eating-disorders treatment has been slow to jump on the neurobiology bandwagon. When my daughter was diagnosed with anorexia in 2005, for instance, we were told to find her a therapist and try to get our daughter to eat “without being the food police,” because, as one therapist informed us, “It’s not about the food.”

Actually, it is about the food. Especially when you’re starving.

Ancel Keys’ 1950 Semi-Starvation Study tracked the effects of starvation and subsequent re-feeding on 36 healthy young men, all conscientious objectors who volunteered for the experiment. Keys was drawn to the subject during World War II, when millions in war-torn Europe – especially those in concentration camps – starved for years. One of Keys’ most interesting findings was that starvation itself, followed by re-feeding after a period of prolonged starvation, produced both physical and psychological symptoms, including depression, preoccupation with weight and body image, anxiety, and obsessions with food, eating, and cooking—all symptoms we now associate with anorexia. Re-feeding the volunteers eventuallyreversed most of the symptoms. However, this approach proved to be difficult on a psychological level, and in some ways more difficult than the starvation period. These results were a clear illustration of just how profound the effects of months of starvation were on the body and mind.

Alas, Keys’ findings were pretty much ignored by the field of eating-disorders treatment for 40-some years, until new technologies like functional magnetic resonance imaging (fMRI) and research gave new context to his work. We now know there is no single root cause for eating disorders. They’re what researchers call multi-factorial, triggered by a perfect storm of factors that probably differs for each person who develops an eating disorder. “Personality characteristics, the environment you live in, your genetic makeup—it’s like a cake recipe,” says Daniel le Grange, Ph.D., director of the Eating Disorders Program at the University of Chicago. “All the ingredients have to be there for that person to develop anorexia.”

One of those ingredients is genetics. Twenty years ago, the Price Foundation sponsored a project that collected DNA samples from thousands of people with eating disorders, their families, and control participants. That data, along with information from the 2006 Swedish Twin Study, suggests that anorexia is highly heritable. “Genes play a substantial role in liability to this illness,” says Cindy Bulik, Ph.D., a professor of psychiatry and director of the University of North Carolina’s Eating Disorders Program. And while no one has yet found a specific anorexia gene, researchers are focusing on an area of chromosome 1 that shows important gene linkages.

Certain personality traits associated with anorexia are probably heritable as well. “Anxiety, inhibition, obsessionality, and perfectionism seem to be present in families of people with an eating disorder,” explains Walter Kaye, M.D., who directs the Eating Disorders Treatment and Research Program at the University of California-San Diego. Another ingredient is neurobiology—literally, the way your brain is structured and how it works. Dr. Kaye’s team at UCSD uses fMRI technology to map blood flow in people’s brains as they think of or perform a task. In one study, Kaye and his colleagues looked at the brains of people with anorexia, people recovered from anorexia, and people who’d never had an eating disorder as they played a gambling game. Participants were asked to guess a number and were rewarded for correct guesses with money or “punished” for incorrect or no guesses by losing money.

Participants in the control group responded to wins and losses by “living in the moment,” wrote researchers: “That is, they made a guess and then moved on to the next task.” But people with anorexia, as well as people who’d recovered from anorexia, showed greater blood flow to the dorsal caudate, an area of the brain that helps link actions and their outcomes, as well as differences in their brains’ dopamine pathways. “People with anorexia nervosa do not live in the moment,” concluded Kaye. “They tend to have exaggerated and obsessive worry about the consequences of their behaviors, looking for rules when there are none, and they are overly concerned about making mistakes.” This study was the first to show altered pathways in the brain even in those recovered from anorexia, suggesting that inherent differences in the brain’s architecture and signaling systems help trigger the illness in the first place.

Food Is Medicine

Some of the best news to come out of research on anorexia is a new therapy aimed at kids and teens. Family-based treatment (FBT), also known as the Maudsley approach, was developed at the Maudsley Hospital in London by Ivan Eisler and Christopher Dare, family therapists who watched nurses on the inpatient eating-disorders unit get patients to eat by sitting with them, talking to them, rubbing their backs, and supporting them. Eisler and Dare wondered how that kind of effective encouragement could be used outside the hospital.

Their observations led them to develop family-based treatment, or FBT, a three-phase treatment for teens and young adults that sidesteps the debate on etiology and focuses instead on recovery. “FBT is agnostic on cause,” says Dr. Le Grange. During phase one, families (usually parents) take charge of a child’s eating, with a goal of fully restoring weight (rather than get to the “90 percent of ideal body weight” many programs use as a benchmark). In phase two, families gradually transfer responsibility for eating back to the teen. Phase three addresses other problems or issues related to normal adolescent development, if there are any.

FBT is a pragmatic approach that recognizes that while people with anorexia are in the throes of acute malnourishment, they can’t choose to eat. And that represents one of the biggest shifts in thinking about eating disorders. The DSM-IV, the most recent “bible” of psychiatric treatment, lists as the first symptom of anorexia “a refusal to maintain body weight at or above a minimally normal weight for age and height.” That notion of refusal is key to how anorexia has been seen, and treated, in the past: as a refusal to eat or gain weight. An acting out. A choice. Which makes sense within the psychodynamic model of cause.

But it doesn’t jibe with the research, which suggests that anorexia is more of an inability to eat than a refusal. Forty-five years ago, Aryeh Routtenberg, then (and still) a professor of psychology at Northwestern University, discovered that when he gave rats only brief daily access to food but let them run as much as they wanted on wheels, they would gradually eat less and less, and run more and more. In fact, they would run without eating until they died, a paradigm Routtenberg called activity-based anorexia (ABA). Rats with ABA seemed to be in the grip of a profound physiological imbalance, one that overrode the normal biological imperatives of hunger and self-preservation. ABA in rats suggests that however it starts, once the cycle of restricting and/or compulsive exercising passes a certain threshold, it takes on a life of its own. Self-starvation is no longer (if it ever was) a choice, but a compulsion to the death.

That’s part of the thinking in FBT. Food is the best medicine for people with anorexia, but they can’t choose to eat. They need someone else to make that choice for them. Therapists don’t sit at the table with patients, but parents do. And parents love and know their children. Like the nurses at the Maudsley Hospital, they find ways to get kids to eat. In a sense, what parents do is outshout the anorexia “voice” many sufferers report hearing, a voice in their heads that tells them not to eat and berates them when they do. Parents take the responsibility for making the choice to eat away from the sufferer, who may insist she’s choosing not to eat but who, underneath the illness, is terrified and hungry.

The best aspect of FBT is that it works. Not for everyone, but for the majority of kids and teens. Several randomized controlled studies of FBT and “treatment as usual” (talk therapy without pressure to eat) show recovery rates of 80 to 90 percent with FBT—a huge improvement over previous recovery rates. A study at the University of Chicago is looking at adapting the treatment for young adults; early results are promising.

The most challenging aspect of FBT is that it’s hard to find. Relatively few therapists in the U.S. are trained in the approach. When our daughter got sick, my husband and I couldn’t find a local FBT therapist. So we cobbled together a team that included our pediatrician, a therapist, and lots of friends who supported our family through the grueling work of re-feeding our daughter. Today she’s a healthy college student with friends, a boyfriend, career goals, and a good relationship with us.

A few years ago, Dr. Le Grange and his research partner, Dr. James Lock of Stanford, created a training institute that certifies a handful of FBT therapists each year. (For a list of FBT providers, visit the Maudsley Parents website.) It’s a start. But therapists are notoriously slow to adopt new treatments, and FBT is no exception. Some therapists find FBT controversial because it upends the conventional view of eating disorders and treatments. Some cling to the psychodynamic view of eating disorders despite the lack of evidence. Still, many in the field have at least heard of FBT and Kaye’s neurobiological findings, even if they don’t believe in them yet.

Change comes slowly. But it comes.

* * *

Harriet Brown teaches magazine journalism at the S.I. Newhouse School of Public Communications in Syracuse, New York. Her latest book is Brave Girl Eating: A Family’s Struggle with Anorexia (William Morrow, 2010).

be there for that person to develop anorexia.”

One of those ingredients is genetics. Twenty years ago, the Price Foundation sponsored a project that collected DNA samples from thousands of people with eating disorders, their families, and control participants. That data, along with information from the 2006 Swedish Twin Study, suggests that anorexia is highly heritable. “Genes play a substantial role in liability to this illness,” says Cindy Bulik, Ph.D., a professor of psychiatry and director of the University of North Carolina’s Eating Disorders Program. And while no one has yet found a specific anorexia gene, researchers are focusing on an area of chromosome 1 that shows important gene linkages.
Certain personality traits associated with anorexia are probably heritable as well. “Anxiety, inhibition, obsessionality, and perfectionism seem to be present in families of people with an eating disorder,” explains Walter Kaye, M.D., who directs the Eating Disorders Treatment and Research Program at the University of California-San Diego. Another ingredient is neurobiology—literally, the way your brain is structured and how it works. Dr. Kaye’s team at UCSD uses fMRI technology to map blood flow in people’s brains as they think of or perform a task. In one study, Kaye and his colleagues looked at the brains of people with anorexia, people recovered from anorexia, and people who’d never had an eating disorder as they played a gambling game. Participants were asked to guess a number and were rewarded for correct guesses with money or “punished” for incorrect or no guesses by losing money.
Participants in the control group responded to wins and losses by “living in the moment,” wrote researchers: “That is, they made a guess and then moved on to the next task.” But people with anorexia, as well as people who’d recovered from anorexia, showed greater blood flow to the dorsal caudate, an area of the brain that helps link actions and their outcomes, as well as differences in their brains’ dopamine pathways. “People with anorexia nervosa do not live in the moment,” concluded Kaye. “They tend to have exaggerated and obsessive worry about the consequences of their behaviors, looking for rules when there are none, and they are overly concerned about making mistakes.” This study was the first to show altered pathways in the brain even in those recovered from anorexia, suggesting that inherent differences in the brain’s architecture and signaling systems help trigger the illness in the first place.
Food Is Medicine
Some of the best news to come out of research on anorexia is a new therapy aimed at kids and teens. Family-based treatment (FBT), also known as the Maudsley approach, was developed at the Maudsley Hospital in London by Ivan Eisler and Christopher Dare, family therapists who watched nurses on the inpatient eating-disorders unit get patients to eat by sitting with them, talking to them, rubbing their backs, and supporting them. Eisler and Dare wondered how that kind of effective encouragement could be used outside the hospital.
Their observations led them to develop family-based treatment, or FBT, a three-phase treatment for teens and young adults that sidesteps the debate on etiology and focuses instead on recovery. “FBT is agnostic on cause,” says Dr. Le Grange. During phase one, families (usually parents) take charge of a child’s eating, with a goal of fully restoring weight (rather than get to the “90 percent of ideal body weight” many programs use as a benchmark). In phase two, families gradually transfer responsibility for eating back to the teen. Phase three addresses other problems or issues related to normal adolescent development, if there are any.
FBT is a pragmatic approach that recognizes that while people with anorexia are in the throes of acute malnourishment, they can’t choose to eat. And that represents one of the biggest shifts in thinking about eating disorders. The DSM-IV, the most recent “bible” of psychiatric treatment, lists as the first symptom of anorexia “a refusal to maintain body weight at or above a minimally normal weight for age and height.” That notion of refusal is key to how anorexia has been seen, and treated, in the past: as a refusal to eat or gain weight. An acting out. A choice. Which makes sense within the psychodynamic model of cause.
But it doesn’t jibe with the research, which suggests that anorexia is more of an inability to eat than a refusal. Forty-five years ago, Aryeh Routtenberg, then (and still) a professor of psychology at Northwestern University, discovered that when he gave rats only brief daily access to food but let them run as much as they wanted on wheels, they would gradually eat less and less, and run more and more. In fact, they would run without eating until they died, a paradigm Routtenberg called activity-based anorexia (ABA). Rats with ABA seemed to be in the grip of a profound physiological imbalance, one that overrode the normal biological imperatives of hunger and self-preservation. ABA in rats suggests that however it starts, once the cycle of restricting and/or compulsive exercising passes a certain threshold, it takes on a life of its own. Self-starvation is no longer (if it ever was) a choice, but a compulsion to the death.
That’s part of the thinking in FBT. Food is the best medicine for people with anorexia, but they can’t choose to eat. They need someone else to make that choice for them. Therapists don’t sit at the table with patients, but parents do. And parents love and know their children. Like the nurses at the Maudsley Hospital, they find ways to get kids to eat. In a sense, what parents do is outshout the anorexia “voice” many sufferers report hearing, a voice in their heads that tells them not to eat and berates them when they do. Parents take the responsibility for making the choice to eat away from the sufferer, who may insist she’s choosing not to eat but who, underneath the illness, is terrified and hungry.
The best aspect of FBT is that it works. Not for everyone, but for the majority of kids and teens. Several randomized controlled studies of FBT and “treatment as usual” (talk therapy without pressure to eat) show recovery rates of 80 to 90 percent with FBT—a huge improvement over previous recovery rates. A study at the University of Chicago is looking at adapting the treatment for young adults; early results are promising.
The most challenging aspect of FBT is that it’s hard to find. Relatively few therapists in the U.S. are trained in the approach. When our daughter got sick, my husband and I couldn’t find a local FBT therapist. So we cobbled together a team that included our pediatrician, a therapist, and lots of friends who supported our family through the grueling work of re-feeding our daughter. Today she’s a healthy college student with friends, a boyfriend, career goals, and a good relationship with us.
A few years ago, Dr. Le Grange and his research partner, Dr. James Lock of Stanford, created a training institute that certifies a handful of FBT therapists each year. (For a list of FBT providers, visit the Maudsley Parents website.) It’s a start. But therapists are notoriously slow to adopt new treatments, and FBT is no exception. Some therapists find FBT controversial because it upends the conventional view of eating disorders and treatments. Some cling to the psychodynamic view of eating disorders despite the lack of evidence. Still, many in the field have at least heard of FBT and Kaye’s neurobiological findings, even if they don’t believe in them yet.
Change comes slowly. But it comes.
* * *
Harriet Brown teaches magazine journalism at the S.I. Newhouse School of Public Communications in Syracuse, New York. Her latest book is Brave Girl Eating: A Family’s Struggle with Anorexia (William Morrow, 2010).

Pregnancy 101: Fertilization is another way to come together during sex

Human ovum (egg). The zona pellucida is a thick clear girdle surrounded by
the cells of the corona radiata (radiant crown). Via Wikimedia Commons.
It was September of 2006. Due to certain events taking place on a certain evening after a certain bottle (or two) of wine, my body was transformed into a human incubator. While I will not describe the events leading up to that very moment, I will dissect the way in which we propagate our species through a magnificent process called fertilization.
During the fertilization play, there are two stars: the sperm cell and the egg cell. The sperm cell hails from a male and is the end product of a series of developmental stages occurring in the testes. The egg cell (or ovum), which is produced by a female, is the largest cell in the human body and becomes a fertilizable entity as a result of the ovulatory process. But to truly understand what is happening at the moment of fertilization, it is important to know more about the cells from which all human life is derived.
Act I: Of sperm and eggs

A sperm cell is described as having a “head” section and a “tail” section. The head, which is shaped like a flattened oval, contains most of the cellular components, including DNA. The head also contains an important structure called an acrosome, which is basically a sac containing enzymes that will help the sperm fuse with an egg (more about the acrosome below). The role of the tail portion of sperm is to act as a propeller, allowing these cells to “swim.” At the top of the tail, near where it meets the head, are a ton of tiny structures called mitochondria. These kidney-shaped components are the powerhouses of all cells, and they generate the energy required for the sperm tail to move the sperm toward its target: the egg.
The egg is a spherical cell containing the usual components, including DNA and mitochondria. However, it differs from other human cells thanks to the presence of a protective shell called the zona pellucida. The egg cell also contains millions of tiny sacs, termed cortical granules, that serve a similar function to the acrosome in sperm cells (more on the granules below).  


Act II: A sperm cell’s journey to the center of the universefemale reproductive system
Given the cyclical nature of the female menstrual cycle, the window for fertilization during each cycle is finite. However, the precise number of days per month a women is fertile remains unclear. On the low end, the window of opportunity lasts for an estimated two days, based on the survival time of the sperm and egg. On the high end, the World Health Organization estimates a fertility window of 10 days. Somewhere in the middle lies a study published in the New England Journal of Medicine, which suggests that six is the magic number of days.

Assuming the fertility window is open, getting pregnant depends on a sperm cell making it to where the egg is located. Achieving that goal is not an easy feat. To help overcome the odds, we have evolved a number of biological tactics. For instance, the volume of a typical male human ejaculate is about a half-teaspoon or more and is estimated to contain about 300 million sperm cells. To become fully active, sperm cells require modification. The acidic environment of the vagina helps with that modification, allowing sperm to gain what is called hyperactive motility, in which its whip-like tail motors it along toward the egg.

Once active, sperm cells begin their long journey through the female reproductive system. To help guide the way, the cells around the female egg emit a chemical substance that attracts sperm cells. The orientation toward these chemicals is called chemotaxis and helps the sperm cells swim in the right direction (after all, they don’t have eyes). Furthermore, sperm get a little extra boost by the contraction of the muscles lining the female reproductive tract, which aid in pushing the little guys along. But, despite all of these efforts, sperm cell death rates are quite high, and only about 200 sperm cells actually make it to the oviduct (also called the fallopian tube), where the egg awaits.

                                                

Act III: Egg marks the spot

With the target in sight, the sperm cells make a beeline for the egg. However, for successful fertilization, only a single sperm cell can fuse with the egg. If an egg fuses with more than one sperm, the outcome can be anything from a failure of fertilization to the development of an embryo and fetus, known as a partial hydatidiform mole, that has a complete extra set of chromosomes and will not survive. Luckily, the egg has ways to help ensure only one sperm fuses with it.

When it reaches the egg, the sperm cell attaches to the surface of the zona pellucida, a protective shell for the egg. For the sperm to fuse with the egg, it must first break through this shell. Enter the sperm cell’s acrosome, which acts as an enzymatic drill. This “drilling,” in combination with the propeller movement of the sperm’s tail, helps to create a hole so that the sperm cell can access the juicy bits of the egg.

This breach of the zona pellucida and fusion of the sperm and egg sets off a rapid cascade of events to block other sperm cells from penetrating the egg’s protective shell. The first response is a shift in the charge of the egg’s cell membrane from negative to positive. This change in charge creates a sort of electrical force field, repelling other sperm cells.



Though this response is lightning fast, it is a temporary measure. A more permanent solution involves the cortical granuleswithin the egg. These tiny sacs release their contents, causing the zona pellucida to harden like the setting of concrete. In effect, the egg–sperm fusion induces the egg to construct a virtually impenetrable wall. Left outside in the cold, the other, unsuccessful sperm cells die within 48 hours.  

Now that the sperm–egg fusion has gone down, the egg start the maturation required for embryo-fetal development. The fertilized egg, now called a zygote, begins its journey into the womb and immediately begins round after round of cell division, over a few weeks resulting in a multicellular organism with a heart, lungs, brain, blood, bones, muscles, and hair. It’s an amazing phenomenon that I’m honored to have experienced (although I didn’t know I was until several weeks later).

The Afterword: A note on genetics

 

A normal human cell that is not a sperm or an egg will contain 23 pairs of chromosomes, for a total of 46 chromosomes. Any deviation from this number of chromosomes will lead to developmental misfires that in most cases results in a non-viable embryo. However, in some instances, a deviation from 46 chromosomes allows for fetal development and birth. The most well-known example is Trisomy 21(having three copies of the 21st chromosome per cell instead of two), also called Down’s Syndrome.

The egg and sperm cells are unlike any other cell in our body. They’re special enough to have a special name, gametes, and they each contain one set of chromosomes, or 23 chromosomes. Because they have half the typical number per cell, when the egg and sperm cell fuse, the resulting zygote contains the typical chromosome number of 46. Now you know how we get half of our genes from our father (who made the sperm cell) and half from our mother (who made the egg cell). Did I just put in your head an image of your parents having sex? It’s the birds and the bees, folks—it applies to everyone!


All text and art except as otherwise noted: 
Jeanne Garbarino, Double X Science Editor
Twitter @JeanneGarb
Animations

I love this video, merely for the fact that it is of B-quality and has a sound track clearly inspired from a porn flick, not to mention that it helps to put things in a more visual context:

This one is great as it has more of a sci-fi Death Star appeal:




References and further reading:
  • Potter RG Jr. “Length of the Fertile Period,” Milbank Q (1961);39:132-162
  • World Health Organization. “A prospective multicentre trial of the ovulation method of natural family planning. III. Characteristics of the menstrual cycle and of the fertile phase,” Fertil Steril (1983);40:773-778
  • Allen J. Wilcox, et al. “Timing of Sexual Intercourse in Relation to Ovulation — Effects on the Probability of Conception, Survival of the Pregnancy, and Sex of the Baby,” New England Journal of Medicine, (1995); 333:1517-1521
  • Poland ML, Moghisse KS, Giblin PT, Ager JW,Olson JM. “Variation of semen measures within normal men,” Fertil Steril (1985);44:396-400
  • Alberts B, Johnson A, Lewis J, et al.Fertilization,” Molecular Biology of the Cell. 4th edition. New York: Garland Science; 2002.
  • How Human Reproduction Works” (contains a video of sperm fusing with egg)
  • Colorado State University’s “Structure of the gametes before fertilization” and “Fertilization.”

Diversity in Science Carnival #14: Women’s History Month–Exploring the role of women in the STEM enterprise

Women in Science, via the Smithsonian.

“We must believe that we are gifted for something.” Marie Curie

Image of a real Rosie the Riveter from the
Women’s History Month site.
It’s tempting to cast the role of women in STEM (Science, Technology, Engineering, and Math) as one of struggles and battles because of their sex, rather than as one of contributions because of their minds. But for Women’s History Month and this Diversity in Science Carnival #14, our focus is the role of women in the enterprise of STEM. There’s more to a woman than her sex and her struggles in science–there is, after all, the enormous body of work women have contributed to science.

 

Our history is ongoing, but we can start with a look back. Thanks to the efforts of the Smithsonian Institution Archives, we can put faces to the names of some of the female STEMmers of history. In a presentation of photographs in an 8 by 9 space, we can see the images of 72 women who contributed to the enterprise of STEM, many of them involved with the Smithsonian in some capacity. As their clothes and the dates on the photos tell us, these women were doing their work in a time when most women didn’t even wear pants.  
Some are Big Names–you’ve probably heard of Marie Curie. But others are like many of us, women working in the trenches of science, contributing to the enterprise of STEM in ways big and small. Women like Arlene Frances Fung, whose bio tells us she was born in Trinidad, went to medical school in Ireland, and by 1968 was engaged in chromosome research at a cancer institute in Philadelphia. From Trinidad to cancer research, her story is one of the millions we could tell about women’s historical contributions to science, if only we could find them all. But here there are 72, and we encourage you to click on each image, look at their direct gazes, ponder how their interest in science and knowledge trumped the heavy pressures of social mores, and discover the contributions these 72 women made, each on her own “little two inches wide of ivory.”

For more on historical and current women in science, you can also see Double X Science’s “Notable Women in Science” series, curated by Adrienne Roehrich.

And then there are the women STEMmers of today, who likely are, according to blogger Emma Leedham writing at her blog Pipettes and Paintbrushes, still underpaid. Leedham also mulls here what constitutes a role model for women–does it require being both a woman and a scientist, or one or the other?

Laurel L. James
Laurel L. James, writing at the University of Washington blog for the school’s SACNAS student chapter, answers with her post, “To identify my role as a woman in science: I must first honor my mother, my family and my past.” Her mother was the first “Miss Indian America,” and Laurel is a self-described non-traditional student at the school, where she is a graduate student in forest resources. She traces her journey to science, one that involved role models who were not scientists but who, as she writes, showed her “how to hang onto the things that are important with the expectation of getting something in return all the while, persevering and knowing who you are; while walking with grace and dignity.” I’d hazard that these words describe many a woman who has moved against the currents of her society to contribute something to the sciences.

A great site, Steminist.com, which features the “voices of women in science, tech, engineering, and math,” runs a series of interviews with modern-day STEMmers, including Double X Science’s own Jeanne Garbarino, and Naadiya Moosajee, an engineer and cofounder of South African Women in Engineering. You can follow Naadiya on Twitter here. Steminist is also running their version of March Madness, except that in honor of Women’s History Month, we can choose “Which historical women in STEM rock (our) world.” The 64 historical STEMinists in the tourney are listed here and include Emily Warren Robling (left), who took over completion of the Brooklyn Bridge when her husband’s health prevented his doing so; she is known as the first woman field engineer. Double X Science also has a series about today’s women in science, Double Xpression, which you can find here.

Today, you can find a woman–or many women–in STEM just about anywhere you look, whether it is as a government scientist at NOAA like Melanie Harrison, PhD, or at NASA. It hasn’t always been that way, and it can still be better. But women have always been a presence in STEM. In the 18thand 19th centuries, astronomer Caroline Herschellabored away through the dark hours of just about every night of her adult life, tracking the night sky. Today, women continue these labors, and STEM wouldn’t be what it is today without women like Herschel willing to stay up all night with the skies or spend days on end in the field or lean over a microscope for hours just to add a tiny bit more to what we know about our world and our universe.

                            

Caroline Herschel
For women in science, we’re there–at night, in the lab, in the field–because we love science. But as the non-science role models seem to tell us, we stick to it–and can stick with it–because we had role models in and out of science who showed us that regardless of our goals, our attitudes and willingness to move forward in spite of obstacles are really what drive us to success in STEM careers. Among the links I received for this carnival was one to Science Club for Girls, which is sponsoring a “Letter to My Young Self” roundup for Women’s History Month. The letters I’ve read invariably have that “stick with it” message, but one stood out for me, and I close with a quote from it.

It’s a letter by Chitra Thakur-Mahadik, who earned her PhD in biochemistry and hemoglobinopathy from the University of Mumbai and served as staff scientist a Mumbai children’s hospital for 25 years. She wrote to her younger, “partially sighted” self that, “The future is ahead and it is not bad!” She goes on to say, “Be fearless but be compassionate to yourself and others… be brave, keep your eyes and ears open and face the world happily. What if there are limitations? Work through them with awareness. –Yours, Chitra”
Links and resources for women in STEM, courtesy of D.N. Lee

Stay tuned for the April Diversity in Science Carnival #15: Confronting the Imposter Syndrome. This topic promises to resonate for many groups in science. I’m pretty sure we’ve all felt at least of twinge of imposter syndrome at some point in our education and careers.  Your editor for this carnival will be the inimitable Scicurious, who  blogs at Scientific American and Scientopia.




UPDATE: Carnival #15 is now available! Go read about imposter syndrome, why it happens, who has it, and what you can do about it. 

By Emily Willingham, DXS managing editor