Tiptoe through the thalamus…

This is how people looked at the brain in 1673. Things have changed.
Sketch by Thomas Bartholin, 1616-1680. 
Image via Wikimedia Commons. Public domain in USA.
In early October, the Allen Institute for Brain Science dropped a metric buttload of brain data into the public domain.
Founded by Microsoft co-founder Paul Allen, the Allen Institute for Brain Science is, not surprisingly, interested in, um, the brain. Specifically, according to the Institute’s web site, its mission is
“to accelerate the understanding of how the human brain works in health and disease. Using a big science approach, we generate useful public resources, drive technological and analytical advances, and discover fundamental brain properties through integration of experiments modeling and theory.”
Towards that end, researchers at the Allen Institute have been mapping gene expression patterns in the human and mouse brains, as well as neural connectivity in the mouse brain. Why? Well, because as a general rule, science requires a control. If scientists are ever to understand the brain – how we think, how we learn, how we remember things, and how all those processes get scrambled during disease or trauma – they first must understand what a typical baseline brain looks like. The Allen Institute is doing the heavy lifting of mapping out these datasets, one brain slice at a time.
In particular, they are mapping the gene expression and neural connectivity of every part of the brain, so that researchers can identify difference between regions, as well as the physical links that tie them together. Differences in gene expression patterns may reveal, for instance, that seemingly related regions actually have different functions, while connectivity, or brain “wiring,” could shed light on how the brain works. 
I’m a technology nut, so I’m less interested in the answers to these questions than in how we arrive at them. And thanks to the Allen Institute, I (and you) can view these data from the luxury of my very own laptop, no special equipment required. (To be clear, you can’t view the data from my laptop. You’d need my computer, and you can’t have it.) You don’t even need to be a brainiac (I couldn’t help myself) to do it.
Here’s how. Point your browser to http://www.brain-map.org/. From there, choose a dataset – say, “Mouse Connectivity.” This is a dataset of images created by injecting fluorescent tracer molecules into the brains of mice, waiting some period of time, then sacrificing the mice, cutting their brains into thin slices — picture an extremely advanced deli slicer — and taking pictures of each one to see where the tracer material went. The result is a massive collection of images, collected by injecting hundreds of mice, preparing thousands of brain slices, and represents gigabytes upon gigabytes of data, which Allen Institute researchers have then reconstructed into a kind of virtual 3D brain.
In the parlance of neuroscientists, this dataset represents a first-pass attempt at a “connectome” – a brain-wide map of neural connections. But it’s definitely not the last; the connectome is vast beyond reckoning. According to one estimate,
Each human brain contains an estimated 100 billion neurons connected through 100 thousand miles of axons and between a hundred trillion to one quadrillion synaptic connections (there are only an estimated 100–400 billion stars in the Milky Way galaxy).
Efforts are currently underway to map the connectome at a number of levels, from the relatively coarse resolution of diffusion MRI to the subcellular level of electron microscopy. That’s a story for another day, but if you’re interested in this topic, I highly recommend Sebastian Seung’s eminently readable 2012 book, Connectome: How the Brain’s Wiring Makes Us Who We Are.

Back to the Allen Institute datasets. When you click on ‘Mouse Connectivity’, the site presents you with an index of injection sites, 47 in all. Let’s click on “visual areas.” The next page that comes up is a list of datasets that include that region. For the sake of this example, let’s click on the first entry in that list, “Primary visual area,” experiment #100141219.

The resulting page contains 140 fluorescent images of brain tissue slices in shades of orange and green. Click one to see it enlarged. Orange areas are non-fluorescent – they didn’t take up the tracer, meaning they are not physically connected to the injection site. On the bottom of the window is a series of navigation tools – you can tiptoe through the thalamus if you’d like, simply by moving these sliders left-right, up-down, and front-back. Just like a real neuroscientist!
 

This is your brain (well, a mouse brain) on rAAV (a fluorescent tracer).
(Source)

You can also zoom in to the cellular level. Here’s a close-up of a densely fluorescent area of the mouse brain — you can actually see individual neurons in this view. 
 

This is a closeup of your brain on rAAV. (Again, if you were a mouse)
(Source)

Another option is to download the Allen Institute’s free Brain Explorer software, a standalone program that lets you view these data offline. With Brain Explorer you can “step” through the brain slice by slice, rotate it, highlight regions. It’s way cool, even if (like me) you don’t know very much about brain anatomy.
Here’s a screenshot from the application, showing gene expression data in the center of the brain.
 

Screenshot of the Allen Institute’s Brain Explorer software

If you’re interested in how the amazing researchers at the Allen Institute are doing this work, they lay it out for you in a nice series of white papers (here’s the one on the mouse connectivity mapping project). I recommend you take a look!
 
The opinions expressed in this post do not necessarily reflect or conflict with those of the DXS editorial team or contributors.

For Dad: A guide on strokes, including a glossary of terms

A scanning electron micrograph of a blood clot.  Image credit: Steve Gschmeissner/Science Photo Library (http://www.sciencephoto.com/media/203271/enlarge#) 


On Monday January 1st, I overheard my dad telling my mom how his left arm was numb and that he had no strength in his left hand.  I immediately ran into the medicine cabinet, grabbed two aspirin, practically shoved them down my dad’s throat, and told him to get his coat.  He was going to the ER. 

As it turns out, my dad was having a stroke, which is basically the cessation of blood flow to an area in the brain.  Luckily, my dad only suffered a very mild stroke, and after several days of monitoring and a battery of tests, he was released from the hospital. 

While we are all relieved that he dodged what could have been a fatal bullet, I came to realize that there was only a superficial understanding of what was actually happening.  So, to help demystify the process for my dad (and anyone else in this situation), I’ve decided to write a mini-guide on strokes.  Below you will find some handy information about strokes, including what they are, as well as a glossary of relevant terms.   

Why we need blood flow in the brain

Before I get into what happens to the brain when a stroke occurs, it is important to first understand why unrestricted blood flow in blood vessels in the brain is important.  The brain is a type of tissue, and like all tissues in our body, it needs a constant access to nutrients and oxygen.  Furthermore, tissues produce waste, and this waste needs to be removed.

The human cardiovascular system. Image Credit: Wikipedia.
Evolution’s solution to this problem is the development of a vast network of blood vessels existing within our tissues.  For instance, take a good look at your very own eyeballs.  Especially when we are tired, we can see tiny blood vessels called capillaries, which help to deliver key nutrients and oxygen, keeping our organs of sight healthy and happy.  Now consider that this type of blood vessel network exists in all tissues in our bodies (because it does).  Depending on the needs of the tissue, these vessels vary in size and number.  Sometimes the blood vessels are large, like the aorta, and sometimes they are super tiny, like the capillaries in our eyes.  However, all serve the same function: to make sure that cells can breath, eat, and get rid of waste.

When blood is prevented from traveling to a specific area within a tissue, the cells in that area will not get enough fuel and oxygen and will begin to die.  For instance, the restriction of blood flow to the heart leads to the death of heart tissue, causing a heart attack.  Similarly, the interruption of normal blood flow within the brain causes the affected cells in the brain to essentially starve, suffocate, and die, resulting in a stroke.  The medical term for a lack of oxygen delivery to tissues due to a restriction in blood flow is ischemia.  In general, the heart, brain, and the kidneys are the most sensitive to ischemic events, which, when occurring in these organs, can be fatal.      

So, what exactly is a stroke?

Some strokes can be categorized as being ischemic.  As mentioned above, an ischemic stroke occurs when blood flow (and the associated oxygen supply) is restricted in an area within the brain, leading to tissue death.  A major cause of ischemic strokes is a progressive disease called atherosclerosis, which can be translated to mean “the hardening of the arteries.” 

Severe atherosclerosis of the aorta.
Image Credit: Wikipedia.
Affecting the entire cardiovascular system, atherosclerosis is the result of cholesterol build-up inside of our blood vessels, causing their openings to become narrower.  These cholesterol plaques can eventually burst, leading to the formation of a blood clot.  Ischemic strokes occur as a result of a blood clot, medically known as a thrombus, that blocks the flow of blood to the brain, a phenomenon often related to complications from atherosclerosis.  A ruptured cholesterol plaque and resulting blood clot can occur in the brain, or it can occur elsewhere in the body, such as in the carotid arteries, and then travel to the brain.  Either way, the blood clot will block blood flow and oxygen delivery to sensitive brain tissue and cause a stroke.           

Strokes that result from the bursting of a blood vessel in the brain can be categorized as being hemorrhagic.  In this situation, there may be a pre-existing condition rendering the blood vessels in the brain defective, causing them to become weak and more susceptible to bursting.  More often than not, a hemorrhagic stroke is the result of high blood pressure, which puts an awful lot of stress on the blood vessels.  Hemorrhagic strokes are less common than ischemic strokes, but still just as serious. 

How do you know if you’ve had a stroke?

The symptoms of a stroke can vary depending on which part of the brain is affected and can develop quite suddenly.  It is common to experience a moderate to severe headache, especially if you are hemorrhaging (bleeding) in the brain.  Other symptoms can include dizziness, a change in senses (hearing, seeing, tasting), muscle tingling and/or weakness, trouble communicating, and/or memory loss.  If you are experiencing any of these warning signs, it is important to get to the hospital right away.  This is especially important if the stroke is being caused by a blood clot since clot-busting medicationsare only effective within the first few hours hours of clot formation. 

Once in the hospital, the caregiver will likely give anyone suspected of having a stroke a CT scan.  From this test, doctors will be able to determine if you had a stroke, what type of stroke you had (ischemic versus hemorrhagic), or if there is some other issue.  However, as was the case with my dad, a CT scan may not show evidence for a stroke.  This issue can arise as a result of timing (test performed before brain injury set in) or size of affected area (too small to see).  When not in an emergency situation, doctors may also or instead choose to prescribe an MRItest to look for evidence of a stroke.    

If a stroke has been confirmed, the next steps will be to try and figure out the underlying cause.  For ischemic strokes, it is important to find out if there is a blood clot and where it originated.  Because my dad had an ischemic stroke, he had to undergo a series of tests that searched for a blood clot in his carotid arteries though ultrasound, as well as in the heart, using both an electrocardiogram(EKG) and an echocardiogram(ultrasound of the heart).  The patient might also be asked to wear a Holter Monitor, which is a device worn for at least 24 hours and can detect potential heart abnormalities that may not be obvious from short-term observations, like those obtained via an EKG.  If a stroke is due to a hemorrhagic event, an angiogramwould be performed to try an pinpoint the compromised blood vessel.  

A stroke you did have.  Now what?

Once a stroke has been confirmed and categorized, the patient will most likely be transferred to the stroke unit of the hospital for both treatment and further observation.  If a clot has been detected, a patient will receive clot-busting medications (assuming this detection occurs within several hours of clot formation).  Alternatively, a clot can be mechanically removed with surgery (animation of clot removal, also known as a thrombectomy).  Patients might also be given blood-thinning medications to either ensure that clots do not increase in size or to prevent new clots from forming.   As for secondary prevention, meaning preventing another stroke from happening, patients might be given blood pressure and cholesterol lowering medications. 

If a disability arises due to stroke, a patient might need to undergo rehabilitation.  The type and duration of stroke rehabilitation is dependent on the area of brain that was affected, as well as the severity of the injury.  

Major risk factors and predictors of stroke

There are many situations that could predispose one to having a stroke, and many of these conditions are treatable.  The absolute greatest predictor of a stroke is blood pressure.  High blood pressure, also known as hypertension, will significantly raise your risk of having a stroke.   Other modifiable stroke risk factors include blood cholesterol levels, smoking, type 2 diabetes, diet, alcohol/drug use, and a sedentary life style.  However, there are also risk factors that you cannot change including family history of stroke, age, race, and gender.  But that shouldn’t stop one from practicing a healthy lifestyle!

In conclusion, strokes are no joke.  I am glad that my dad is still here (yes, dad, if you are reading this, we are in fact friends) and that he escaped with relatively no real consequences.  Let’s just not do this again, ok?  

Stroke Glossary

Anti-coagulants:These are medications that help to reduce the incidence of blood clotting.  The repertoire includes aspirin, Plavix, Warfarin, and Coumadin.  Also called blood thinners.
Atherosclerosis:Literally translated as “hardening of the arteries,” this condition is hallmarked by the build-up of cholesterol inside of blood vessels.  Atherosclerosis can lead to many complications including heart disease and stroke.

Atherosclerotic Plaque: The build of fatty materials, cholesterol, various cell types, and calcium.

Cardiovascular System: The network of blood vessels and heart that works to distribute blood throughout the body. 

Carotid Arteries: Arteries that carry blood away from the heart toward the head, neck, and brain.

CT Scan: Cross sectional pictures of the brain using X-rays.

Echocardiogram:An ultrasound of the heart.  In stroke vicitms, electrocardiography is used to detect the presence of a blood clot in the heart.

Electrocardiogram (EKG or ECG): The measurement of the electrical activity of the heart.  It is performed by attaching electrodes to a patient at numerous locations on the body, which function to measure electrical output of the heart.

Embolic Stroke: A type of ischemic stroke, an embolic stroke occurs when a blood clot forms (usually in the heart) and then travels to the brain, blocking blood flow and oxygen delivery to brain tissue.

Hemorrhagic Stroke: A type of stroke that results form the bursting of a blood vessel in the brain.

Hypertension: High blood pressure, defined as having 140/90 mmHg or above.

Ischemic Stroke: The restriction of blood flow to an area within the brain.

Magnetic Resonance Imaging (MRI): An imaging technique employing a magnetic field that can contrast different soft tissues in the body.

Thrombolytic Medications: Medications that are approved to dissolve blood clots.  Also called “clot-busting” medications.

Thrombus:Blood clot.

Sesame Street helps unlock the secrets to the brain during children’s learning

By Tara Haelle, Health Editor
[This post appeared previously at Red Wine and Apple Sauce.]

Looking to let go of a little “mommy guilt” for using the television now and then to give yourself a breather? There may be plenty of evidence that leaving children to watch too much television is a bad idea, but there is something to the idea that educational TV is, well, educational. We have the brain scans to prove it!

A study published in PLOS Biology used functional MRI scans to check out the brains of 26 children and 20 adults while they watched 20 minutes of Sesame Street. The actual purpose of the study wasn’t to find out if Sesame Street was educational per se. Rather, it was to observe the neural processes in the brain while a child is learning “naturalistically” and then see whether what they saw could predict how well the children would perform on standardized IQ tests.

Often, participants in studies receive fMRI scans while they are doing some sort of task that is supposed to simulate learning and/or stimulate certain neural processes. For example, a study subject might be asked to put together a three-dimensional puzzle on a computer (so their head remains still enough for the scan) to see how the brain interprets spatial relations.

However, these sorts of oversimplified “lab” tasks are not always representative of real-world activities, so it’s not clear whether what the researchers see on the brain images during these tasks is necessarily indicative of what REAL-life spatial relations thinking looks like. Are the neural processes seen in an fMRI scan while putting together blocks on a computer screen the same as what’s seen in the brain while a person builds a treehouse?

In this study, the researchers found a partial answer to exactly that kind of question, and the answer is no.

The children in study, ranging in age from 4 to 11 and all typically developing, watched the same 20-minute montage of short clips with Big Bird, Cookie Monster, the Count, Oscar and the rest of the gang teaching numbers and letters, shapes and colors, planets and countries, and so on. Meanwhile, the fMRI was taking a snapshot of their brain every two seconds.

The fMRI (which uses a giant magnet, not radiation, to peek into the brain) works by dividing the brain into a 3-D grid so that it can measure the intensity of the brain signals in each little section (about 40,000 of them, called voxels). The researchers collected a total of 609 images of each participant’s brain, which they could then use to map out the neural processes of the participants while they were watching.

They also had the children (23 of them), in a separate fMRI scanning period, perform a one of those lab-only fMRI tasks. In this case, the kids matched isolated pairs of faces, numbers, words and shapes on the computer (they pressed a button if the two images shown matched) while the fMRI images of their brains were created.

Finally, the children (19 of them) took IQ tests that primarily tested their math and verbal skills. Then the researchers analyzed the maps of neural processes in the children and their comparisons with the adults.

They found a couple of interesting things. First, the kids whose neural “maps” were most similar to the adults also performed the best on the IQ tests. This means kids’ brain structure matures in a predictable way, which the researchers called “neural maturity.”

“Broadly speaking, the children showed group-level similarity to adults in cortical regions associated with vision (occipital cortex), auditory processing (lateral temporal cortex), language (frontal and temporal cortex), visuo-spatial processing and calculation (intraparietal cortex), and several other functions,” the authors wrote.

The fMRI scan on the left represents correlations in neural activity between children and adults, in the middle between children and other children, and on the right between adults and other adults. Such neural maps, says University of Rochester cognitive scientist Jessica Cantlon, reveal how the brain’€™s neural structure develops along predictable pathways as we mature.

Second, the brain maps created during the Sesame Street viewing accurately predicted how the children performed on the IQ tests. Kids who did better on the verbal tasks showed more mature neural patterns in a part of the brain that handles speech and language, called the Broca area. Meanwhile, the kids whose math scores were highest had more neural maturity in a part of the brain that processes numbers, called intraparietal sulcus.

But the researchers’ other finding was that those areas of neural maturity seen during Sesame Street viewing — the ones that matched up with the children’s scores on the IQ test — were not seen during the fMRI task of matching faces, numbers, words and shapes. Basically, the “let’s try to simulate what learning looks like in the brain” task designed specifically for fMRI scans didn’t help much. But the more naturalistic, organic learning that takes places while watching Sesame Street did work.

Researchers now know they can use activities like viewing educational TV to scan children’s brains and learn more about how they learn — and it’s more accurate and helpful than invented computer tasks. It’s possible this technology and research could be applied to understanding better what’s going on with certain learning disabilities.

But a nice additional finding is that, hey, Sesame Street really IS educational! Of course, my son’s favorite show is a different PBS production — Dinosaur Train (which I admit I enjoy too) — so I also feel a better that little D spends a half hour or two, several days a week, learning from Buddy the Tyrannosaurus Rex, Tiny the Pteranodon, Mr. Conductor and Dr. Scott the Paleontologist about dinosaurs, carnivores, herbivores and how to test a hypothesis. All aboard!

Hormonal birth control explainer: a matter of health

Politics often interferes where it has no natural business, and one of those places is the discussion among a teenager, her parents, and her doctor or between a woman and her doctor about the best choices for health. The hottest button politics is pushing right now takes the form of a tiny hormone-containing pill known popularly as the birth control pill or, simply, The Pill. This hormonal medication, when taken correctly (same time every day, every day), does indeed prevent pregnancy. But like just about any other medication, this one has multiple uses, the majority of them unrelated to pregnancy prevention.

But let’s start with pregnancy prevention first and get it out of the way. When I used to ask my students how these hormone pills work, they almost invariably answered, “By making your body think it is pregnant.” That’s not correct. We take advantage of our understanding of how our bodies regulate hormones not to mimic pregnancy, exactly, but instead to flatten out what we usually talk about as a hormone cycle. 

The Menstrual Cycle

In a hormonally cycling girl or woman, the brain talks to the ovaries and the ovaries send messages to the uterus and back to the brain. All this chat takes place via chemicals called hormones. In human females, the ovarian hormones are progesterone and estradiol, a type of estrogen, and the brain hormones are luteinizing hormoneand follicle-stimulating hormone. The levels of these four hormones drive what we think of as the menstrual cycle, which exists to prepare an egg for fertilization and to make the uterine lining ready to receive a fertilized egg, should it arrive. 

Fig. 1. Female reproductive anatomy. Credit: Jeanne Garbarino.
In the theoretical 28-day cycle, fertilization (fusion of sperm and egg), if it occurs, will happen about 14 days in, timed with ovulation, or release of the egg from the ovary into the Fallopian tube or oviduct (see video–watch for the tiny egg–and Figure 1). The fertilized egg will immediately start dividing, and a ball of cells (called a blastocyst) that ultimately develops is expected to arrive at the uterus a few days later.
If the ball of cells shows up and implants in the uterine wall, the ovary continues producing progesterone to keep that fluffy, welcoming uterine lining in place. If nothing shows up, the ovaries drop output of estradiol and progesterone so that the uterus releases its lining of cells (which girls and women recognize as their “period”), and the cycle starts all over again.


A typical cycle

The typical cycle (which almost no girl or woman seems to have) begins on day 1 when a girl or woman starts her “period.” This bleeding is the shedding of the uterine lining, a letting go of tissue because the ovaries have bottomed out production of the hormones that keep the tissue intact. During this time, the brain and ovaries are in communication. In the first two weeks of the cycle, called the “follicular phase” (see Figure 2), an ovary has the job of promoting an egg to mature. The egg is protected inside a follicle that spends about 14 days reaching maturity. During this time, the ovary produces estrogen at increasing levels, which causes thickening of the uterine lining, until the estradiol hits a peak about midway through the cycle. This spike sends a hormone signal to the brain, which responds with a hormone spike of its own.

Fig. 2. Top: Day of cycle and phases. Second row: Body temperature (at waking) through cycle.
Third row: Hormones and their levels. Fourth row: What the ovaries are doing.
Fifth row: What the uterus is doing. Via Wikimedia Commons
In the figure, you can see this spike as the red line indicating luteinizing hormone. A smaller spike of follicle-stimulating hormone (blue line), also from the brain, occurs simultaneously. These two hormones along with the estradiol peak result in the follicle expelling the egg from the ovary into the Fallopian tube, or oviduct (Figure 3, step 4). That’s ovulation.
Fun fact: Right when the estrogen spikes, a woman’s body temperature will typically drop a bit (see “Basal body temperature” in the figure), so many women have used temperature monitoring to know that ovulation is happening. Some women also may experience a phenomenon called mittelschmerz, a pain sensation on the side where ovulation is occurring; ovaries trade off follicle duties with each cycle.  

The window of time for a sperm to meet the egg is usually very short, about a day. Meanwhile, as the purple line in the “hormone level” section of Figure 2 shows, the ovary in question immediately begins pumping out progesterone, which maintains that proliferated uterine lining should a ball of dividing cells show up.
Fig. 3. Follicle cycle in the ovary. Steps 1-3, follicular phase, during
which the follicle matures with the egg inside. Step 4: Ovulation, followed by
the luteal phase. Step 5: Corpus luteum (yellow body) releases progesterone.
Step 6: corpus luteum degrades if no implantation in uterus occurs.
Via Wikimedia Commons.
The structure in the ovary responsible for this phase, the luteal phase, is the corpus luteum (“yellow body”; see Figure 3, step 5), which puts out progesterone for a couple of weeks after ovulation to keep the uterine lining in place. If nothing implants, the corpus luteum degenerates (Figure 3, step 6). If implantation takes place, this structure will (should) instead continue producing progesterone through the early weeks of pregnancy to ensure that the lining doesn’t shed.

How do hormones in a pill stop all of this?

The hormones from the brain–luteinizing hormone and follicle-stimulating hormone– spike because the brain gets signals from the ovarian hormones. When a girl or woman takes the pills, which contain synthetics of ovarian hormones, the hormone dose doesn’t peak that way. Instead, the pills expose the girl or woman to a flat daily dose of hormones (synthetic estradiol and synthetic progesterone) or hormone (synthetic progesterone only). Without these peaks (and valleys), the brain doesn’t release the hormones that trigger follicle maturation or ovulation. Without follicle maturation and ovulation, no egg will be present for fertilization.

Assorted hormonal pills. Via Wikimedia Commons.
Most prescriptions of hormone pills are for packets of 28 pills. Typically, seven of these pills–sometimes fewer–are “dummy pills.” During the time a woman takes these dummy pills, her body shows the signs of withdrawal from the hormones, usually as a fairly light bleeding for those days, known as “withdrawal bleeding.” With the lowest-dose pills, the uterine lining may proliferate very little, so that this bleeding can be quite light compared to what a woman might experience under natural hormone influences.

How important are hormonal interventions for birth control?

Every woman has a story to tell, and the stories about the importance of hormonal birth control are legion. My personal story is this: I have three children. With our last son, I had two transient ischemic attacks at the end of the pregnancy, tiny strokes resulting from high blood pressure in the pregnancy. I had to undergo an immediate induction. This was the second time I’d had this condition, called pre-eclampsia, having also had this with our first son. My OB-GYN told me under no uncertain terms that I could not–should not–get pregnant again, as a pregnancy could be life threatening.

But I’m married, happily. As my sister puts it, my husband and I “like each other.” We had to have a failsafe method of ensuring that I wouldn’t become pregnant and endanger my life. For several years, hormonal medication made that possible. After I began having cluster headaches and high blood pressure on this medication in my forties, my OB-GYN and I talked about options, and we ultimately turned to surgery to prevent pregnancy.

But surgery is almost always not reversible. For a younger woman, it’s not the temporary option that hormonal pills provide. Hormonal interventions also are available in other forms, including as a vaginal ring, intrauterine device (some are hormonal), and implants, all reversible.

                                            

One of the most important things a society can do for its own health is to ensure that women in that society have as much control as possible over their reproduction. Thanks to hormonal interventions, although I’ve been capable of childbearing for 30 years, I’ve had only three children in that time. The ability to control my childbearing has meant I’ve been able to focus on being the best woman, mother, friend, and partner I can be, not only for myself and my family, but as a contributor to society, as well.

What are other uses of hormonal interventions?

Heavy, painful, or irregular periods. Did you read that part about how flat hormone inputs can mean less build up of the uterine lining and thus less bleeding and a shorter period? Many girls and women who lack hormonal interventions experience bleeding so heavy that they become anemic. This kind of bleeding can take a girl or woman out of commission for days at a time, in addition to threatening her health. Pain and irregular bleeding also are disabling and negatively affect quality of life on a frequent basis. Taking a single pill each day can make it all better. 


Unfortunately, the current political climate can take this situation–especially for teenage girls–and cast it as a personal moral failing with implications that a girl who takes hormonal medications is a “slut,” rather than the real fact that this hormonal intervention is literally maintaining the regularity of her health.

For some context, imagine that a whenever a boy or man produced sperm, it was painful or caused extensive blood loss that resulted in anemia. Would there be any issues raised with providing a medication that successfully addressed this problem?

Polycystic ovarian syndrome. This syndrome is, at its core, an imbalance of the ovarian hormones that is associated with all kinds of problems, from acne to infertility to overweight to uterine cancer. Guess what balances those hormones back out? Yes. Hormonal medication, otherwise known as The Pill.  

Again, for some context, imagine that this syndrome affected testes instead of ovaries, and caused boys and men to become infertile, experience extreme pain in the testes, gain weight, be at risk for diabetes, and lose their hair. Would there be an issue with providing appropriate hormonal medication to address this problem?

Acne. I had a friend in high school who was on hormonal medication, not because she was sexually active (she was not) but because she struggled for years with acne. This is an FDA-approved use of this medication.

Are there health benefits of hormonal interventions?

In a word, yes. They can protect against certain cancers, including ovarian and endometrial, or uterine, cancer. Women die from these cancers, and this protection is not negligible. They may also help protect against osteoporosis, or bone loss. In cases like mine, they protect against a potentially life-threatening pregnancy.

Speaking of pregnancy, access to contraception is “the only reliable way” to reduce unwanted pregnancies and abortion rates [PDF]. Pregnancy itself is far more threatening to a girl’s (in particular) or woman’s health than hormonal contraception.

Are there health risks with hormonal interventions?

Yes. No medical intervention is without risk. In the case of hormonal interventions, lifestyle habits such as smoking can enhance risk for high blood pressure and blood clots. Age can be a factor, although–as I can attest–women no longer have to stop taking hormonal interventions after age 35 as long as they are nonsmokers and blood pressure is normal. These interventions have been associated with a decrease in some cancers, as I’ve noted, but also with an increase in others, such as liver cancer, over the long term. The effect on breast cancer risk is mixed and may have to do with how long taking the medication delays childbearing. ETA: PLoS Medicine just published a paper (open access) addressing the effects of hormonal interventions on cancer risk.
———————————————————
By Emily Willingham, DXS Managing Editor
Opinions expressed in this piece are my own and do not necessarily reflect the opinions of all DXS editors or contributors.

Anorexia nervosa, neurobiology, and family-based treatment

Via Wikimedia Commons
Photo credit: Sandra Mann
By Harriet Brown, DXS contributor

Back in 1978, psychoanalyst Hilde Bruch published the first popular book on anorexia nervosa. In The Golden Cage, she described anorexia as a psychological illness caused by environmental factors: sexual abuse, over-controlling parents, fears about growing up, and/or other psychodynamic factors. Bruch believed young patients needed to be separated from their families (a concept that became known as a “parentectomy”) so therapists could help them work through the root issues underlying the illness. Then, and only then, patients would choose to resume eating. If they were still alive.

Bruch’s observations dictated eating-disorders treatments for decades, treatments that led to spectacularly ineffective results. Only about 35% of people with anorexia recovered; another 20% died, of starvation or suicide; and the rest lived with some level of chronic illness for the rest of their lives.

Not a great track record, overall, and especially devastating for women, who suffer from anorexia at a rate of 10 times that of men. Luckily, we know a lot more about anorexia and other eating disorders now than we did in 1978.

“It’s Not About the Food”

In Bruch’s day, anorexia wasn’t the only illness attributed to faulty parenting and/or trauma. Therapists saw depression, anxiety, schizophrenia, eating disorders, and homosexuality (long considered a psychiatric “illness”) as ailments of the mind alone. Thanks to the rising field of behavioral neuroscience, we’ve begun to untangle the ways brain circuitry, neural architecture, and other biological processes contribute to these disorders. Most experts now agree that depression and anxiety can be caused by, say, neurotransmitter imbalances as much as unresolved emotional conflicts, and treat them accordingly. But the field of eating-disorders treatment has been slow to jump on the neurobiology bandwagon. When my daughter was diagnosed with anorexia in 2005, for instance, we were told to find her a therapist and try to get our daughter to eat “without being the food police,” because, as one therapist informed us, “It’s not about the food.”

Actually, it is about the food. Especially when you’re starving.

Ancel Keys’ 1950 Semi-Starvation Study tracked the effects of starvation and subsequent re-feeding on 36 healthy young men, all conscientious objectors who volunteered for the experiment. Keys was drawn to the subject during World War II, when millions in war-torn Europe – especially those in concentration camps – starved for years. One of Keys’ most interesting findings was that starvation itself, followed by re-feeding after a period of prolonged starvation, produced both physical and psychological symptoms, including depression, preoccupation with weight and body image, anxiety, and obsessions with food, eating, and cooking—all symptoms we now associate with anorexia. Re-feeding the volunteers eventuallyreversed most of the symptoms. However, this approach proved to be difficult on a psychological level, and in some ways more difficult than the starvation period. These results were a clear illustration of just how profound the effects of months of starvation were on the body and mind.

Alas, Keys’ findings were pretty much ignored by the field of eating-disorders treatment for 40-some years, until new technologies like functional magnetic resonance imaging (fMRI) and research gave new context to his work. We now know there is no single root cause for eating disorders. They’re what researchers call multi-factorial, triggered by a perfect storm of factors that probably differs for each person who develops an eating disorder. “Personality characteristics, the environment you live in, your genetic makeup—it’s like a cake recipe,” says Daniel le Grange, Ph.D., director of the Eating Disorders Program at the University of Chicago. “All the ingredients have to be there for that person to develop anorexia.”

One of those ingredients is genetics. Twenty years ago, the Price Foundation sponsored a project that collected DNA samples from thousands of people with eating disorders, their families, and control participants. That data, along with information from the 2006 Swedish Twin Study, suggests that anorexia is highly heritable. “Genes play a substantial role in liability to this illness,” says Cindy Bulik, Ph.D., a professor of psychiatry and director of the University of North Carolina’s Eating Disorders Program. And while no one has yet found a specific anorexia gene, researchers are focusing on an area of chromosome 1 that shows important gene linkages.

Certain personality traits associated with anorexia are probably heritable as well. “Anxiety, inhibition, obsessionality, and perfectionism seem to be present in families of people with an eating disorder,” explains Walter Kaye, M.D., who directs the Eating Disorders Treatment and Research Program at the University of California-San Diego. Another ingredient is neurobiology—literally, the way your brain is structured and how it works. Dr. Kaye’s team at UCSD uses fMRI technology to map blood flow in people’s brains as they think of or perform a task. In one study, Kaye and his colleagues looked at the brains of people with anorexia, people recovered from anorexia, and people who’d never had an eating disorder as they played a gambling game. Participants were asked to guess a number and were rewarded for correct guesses with money or “punished” for incorrect or no guesses by losing money.

Participants in the control group responded to wins and losses by “living in the moment,” wrote researchers: “That is, they made a guess and then moved on to the next task.” But people with anorexia, as well as people who’d recovered from anorexia, showed greater blood flow to the dorsal caudate, an area of the brain that helps link actions and their outcomes, as well as differences in their brains’ dopamine pathways. “People with anorexia nervosa do not live in the moment,” concluded Kaye. “They tend to have exaggerated and obsessive worry about the consequences of their behaviors, looking for rules when there are none, and they are overly concerned about making mistakes.” This study was the first to show altered pathways in the brain even in those recovered from anorexia, suggesting that inherent differences in the brain’s architecture and signaling systems help trigger the illness in the first place.

Food Is Medicine

Some of the best news to come out of research on anorexia is a new therapy aimed at kids and teens. Family-based treatment (FBT), also known as the Maudsley approach, was developed at the Maudsley Hospital in London by Ivan Eisler and Christopher Dare, family therapists who watched nurses on the inpatient eating-disorders unit get patients to eat by sitting with them, talking to them, rubbing their backs, and supporting them. Eisler and Dare wondered how that kind of effective encouragement could be used outside the hospital.

Their observations led them to develop family-based treatment, or FBT, a three-phase treatment for teens and young adults that sidesteps the debate on etiology and focuses instead on recovery. “FBT is agnostic on cause,” says Dr. Le Grange. During phase one, families (usually parents) take charge of a child’s eating, with a goal of fully restoring weight (rather than get to the “90 percent of ideal body weight” many programs use as a benchmark). In phase two, families gradually transfer responsibility for eating back to the teen. Phase three addresses other problems or issues related to normal adolescent development, if there are any.

FBT is a pragmatic approach that recognizes that while people with anorexia are in the throes of acute malnourishment, they can’t choose to eat. And that represents one of the biggest shifts in thinking about eating disorders. The DSM-IV, the most recent “bible” of psychiatric treatment, lists as the first symptom of anorexia “a refusal to maintain body weight at or above a minimally normal weight for age and height.” That notion of refusal is key to how anorexia has been seen, and treated, in the past: as a refusal to eat or gain weight. An acting out. A choice. Which makes sense within the psychodynamic model of cause.

But it doesn’t jibe with the research, which suggests that anorexia is more of an inability to eat than a refusal. Forty-five years ago, Aryeh Routtenberg, then (and still) a professor of psychology at Northwestern University, discovered that when he gave rats only brief daily access to food but let them run as much as they wanted on wheels, they would gradually eat less and less, and run more and more. In fact, they would run without eating until they died, a paradigm Routtenberg called activity-based anorexia (ABA). Rats with ABA seemed to be in the grip of a profound physiological imbalance, one that overrode the normal biological imperatives of hunger and self-preservation. ABA in rats suggests that however it starts, once the cycle of restricting and/or compulsive exercising passes a certain threshold, it takes on a life of its own. Self-starvation is no longer (if it ever was) a choice, but a compulsion to the death.

That’s part of the thinking in FBT. Food is the best medicine for people with anorexia, but they can’t choose to eat. They need someone else to make that choice for them. Therapists don’t sit at the table with patients, but parents do. And parents love and know their children. Like the nurses at the Maudsley Hospital, they find ways to get kids to eat. In a sense, what parents do is outshout the anorexia “voice” many sufferers report hearing, a voice in their heads that tells them not to eat and berates them when they do. Parents take the responsibility for making the choice to eat away from the sufferer, who may insist she’s choosing not to eat but who, underneath the illness, is terrified and hungry.

The best aspect of FBT is that it works. Not for everyone, but for the majority of kids and teens. Several randomized controlled studies of FBT and “treatment as usual” (talk therapy without pressure to eat) show recovery rates of 80 to 90 percent with FBT—a huge improvement over previous recovery rates. A study at the University of Chicago is looking at adapting the treatment for young adults; early results are promising.

The most challenging aspect of FBT is that it’s hard to find. Relatively few therapists in the U.S. are trained in the approach. When our daughter got sick, my husband and I couldn’t find a local FBT therapist. So we cobbled together a team that included our pediatrician, a therapist, and lots of friends who supported our family through the grueling work of re-feeding our daughter. Today she’s a healthy college student with friends, a boyfriend, career goals, and a good relationship with us.

A few years ago, Dr. Le Grange and his research partner, Dr. James Lock of Stanford, created a training institute that certifies a handful of FBT therapists each year. (For a list of FBT providers, visit the Maudsley Parents website.) It’s a start. But therapists are notoriously slow to adopt new treatments, and FBT is no exception. Some therapists find FBT controversial because it upends the conventional view of eating disorders and treatments. Some cling to the psychodynamic view of eating disorders despite the lack of evidence. Still, many in the field have at least heard of FBT and Kaye’s neurobiological findings, even if they don’t believe in them yet.

Change comes slowly. But it comes.

* * *

Harriet Brown teaches magazine journalism at the S.I. Newhouse School of Public Communications in Syracuse, New York. Her latest book is Brave Girl Eating: A Family’s Struggle with Anorexia (William Morrow, 2010).

be there for that person to develop anorexia.”

One of those ingredients is genetics. Twenty years ago, the Price Foundation sponsored a project that collected DNA samples from thousands of people with eating disorders, their families, and control participants. That data, along with information from the 2006 Swedish Twin Study, suggests that anorexia is highly heritable. “Genes play a substantial role in liability to this illness,” says Cindy Bulik, Ph.D., a professor of psychiatry and director of the University of North Carolina’s Eating Disorders Program. And while no one has yet found a specific anorexia gene, researchers are focusing on an area of chromosome 1 that shows important gene linkages.
Certain personality traits associated with anorexia are probably heritable as well. “Anxiety, inhibition, obsessionality, and perfectionism seem to be present in families of people with an eating disorder,” explains Walter Kaye, M.D., who directs the Eating Disorders Treatment and Research Program at the University of California-San Diego. Another ingredient is neurobiology—literally, the way your brain is structured and how it works. Dr. Kaye’s team at UCSD uses fMRI technology to map blood flow in people’s brains as they think of or perform a task. In one study, Kaye and his colleagues looked at the brains of people with anorexia, people recovered from anorexia, and people who’d never had an eating disorder as they played a gambling game. Participants were asked to guess a number and were rewarded for correct guesses with money or “punished” for incorrect or no guesses by losing money.
Participants in the control group responded to wins and losses by “living in the moment,” wrote researchers: “That is, they made a guess and then moved on to the next task.” But people with anorexia, as well as people who’d recovered from anorexia, showed greater blood flow to the dorsal caudate, an area of the brain that helps link actions and their outcomes, as well as differences in their brains’ dopamine pathways. “People with anorexia nervosa do not live in the moment,” concluded Kaye. “They tend to have exaggerated and obsessive worry about the consequences of their behaviors, looking for rules when there are none, and they are overly concerned about making mistakes.” This study was the first to show altered pathways in the brain even in those recovered from anorexia, suggesting that inherent differences in the brain’s architecture and signaling systems help trigger the illness in the first place.
Food Is Medicine
Some of the best news to come out of research on anorexia is a new therapy aimed at kids and teens. Family-based treatment (FBT), also known as the Maudsley approach, was developed at the Maudsley Hospital in London by Ivan Eisler and Christopher Dare, family therapists who watched nurses on the inpatient eating-disorders unit get patients to eat by sitting with them, talking to them, rubbing their backs, and supporting them. Eisler and Dare wondered how that kind of effective encouragement could be used outside the hospital.
Their observations led them to develop family-based treatment, or FBT, a three-phase treatment for teens and young adults that sidesteps the debate on etiology and focuses instead on recovery. “FBT is agnostic on cause,” says Dr. Le Grange. During phase one, families (usually parents) take charge of a child’s eating, with a goal of fully restoring weight (rather than get to the “90 percent of ideal body weight” many programs use as a benchmark). In phase two, families gradually transfer responsibility for eating back to the teen. Phase three addresses other problems or issues related to normal adolescent development, if there are any.
FBT is a pragmatic approach that recognizes that while people with anorexia are in the throes of acute malnourishment, they can’t choose to eat. And that represents one of the biggest shifts in thinking about eating disorders. The DSM-IV, the most recent “bible” of psychiatric treatment, lists as the first symptom of anorexia “a refusal to maintain body weight at or above a minimally normal weight for age and height.” That notion of refusal is key to how anorexia has been seen, and treated, in the past: as a refusal to eat or gain weight. An acting out. A choice. Which makes sense within the psychodynamic model of cause.
But it doesn’t jibe with the research, which suggests that anorexia is more of an inability to eat than a refusal. Forty-five years ago, Aryeh Routtenberg, then (and still) a professor of psychology at Northwestern University, discovered that when he gave rats only brief daily access to food but let them run as much as they wanted on wheels, they would gradually eat less and less, and run more and more. In fact, they would run without eating until they died, a paradigm Routtenberg called activity-based anorexia (ABA). Rats with ABA seemed to be in the grip of a profound physiological imbalance, one that overrode the normal biological imperatives of hunger and self-preservation. ABA in rats suggests that however it starts, once the cycle of restricting and/or compulsive exercising passes a certain threshold, it takes on a life of its own. Self-starvation is no longer (if it ever was) a choice, but a compulsion to the death.
That’s part of the thinking in FBT. Food is the best medicine for people with anorexia, but they can’t choose to eat. They need someone else to make that choice for them. Therapists don’t sit at the table with patients, but parents do. And parents love and know their children. Like the nurses at the Maudsley Hospital, they find ways to get kids to eat. In a sense, what parents do is outshout the anorexia “voice” many sufferers report hearing, a voice in their heads that tells them not to eat and berates them when they do. Parents take the responsibility for making the choice to eat away from the sufferer, who may insist she’s choosing not to eat but who, underneath the illness, is terrified and hungry.
The best aspect of FBT is that it works. Not for everyone, but for the majority of kids and teens. Several randomized controlled studies of FBT and “treatment as usual” (talk therapy without pressure to eat) show recovery rates of 80 to 90 percent with FBT—a huge improvement over previous recovery rates. A study at the University of Chicago is looking at adapting the treatment for young adults; early results are promising.
The most challenging aspect of FBT is that it’s hard to find. Relatively few therapists in the U.S. are trained in the approach. When our daughter got sick, my husband and I couldn’t find a local FBT therapist. So we cobbled together a team that included our pediatrician, a therapist, and lots of friends who supported our family through the grueling work of re-feeding our daughter. Today she’s a healthy college student with friends, a boyfriend, career goals, and a good relationship with us.
A few years ago, Dr. Le Grange and his research partner, Dr. James Lock of Stanford, created a training institute that certifies a handful of FBT therapists each year. (For a list of FBT providers, visit the Maudsley Parents website.) It’s a start. But therapists are notoriously slow to adopt new treatments, and FBT is no exception. Some therapists find FBT controversial because it upends the conventional view of eating disorders and treatments. Some cling to the psychodynamic view of eating disorders despite the lack of evidence. Still, many in the field have at least heard of FBT and Kaye’s neurobiological findings, even if they don’t believe in them yet.
Change comes slowly. But it comes.
* * *
Harriet Brown teaches magazine journalism at the S.I. Newhouse School of Public Communications in Syracuse, New York. Her latest book is Brave Girl Eating: A Family’s Struggle with Anorexia (William Morrow, 2010).

Are your children always on your mind? They may be IN your mind

Hmm. Do I have any cells in there?
On Mother’s Day this year, we told you why, if you have biological children, those children are literally a part of you for life thanks to a phenomenon called microchimerism. When a woman is pregnant, some of the fetal cells slip past the barrier between mother and fetus and take up residence in the mother. What researchers hadn’t turned up in humans before now was that some of those cells can end up in the mother’s brain. Once there, according to a study published today in PLoS ONE, they can stick around for decades and, the researchers suggest, might have a link to Alzheimer’s disease. Note that is a big “might.”

The easiest way to tell if a fetal cell’s made it into a maternal tissue is to look for cells carrying a Y chromosome or a Y gene sequence (not all fetuses developing as male carry a Y chromosome, but that’s a post for another time). As you probably know, most women don’t carry a Y chromosome in their own cells (but some do; another post for another time). In this study, researchers examined postmortem brain tissue from 26 women who had no detectable neurological disease and 33 women who’d had Alzheimer’s disease; the women’s ages at death ranged from 32 to 101. They found that almost two thirds (37) of all of the women tested had evidence of the Y chromosome gene in their brains, in several brain regions. The blue spots in the image below highlight cells carrying these “male” genes a woman’s brain tissue.

Photo Credit: Chan WFN, Gurnot C, Montine TJ, Sonnen JA, Guthrie KA, et al. (2012)
Male Microchimerism in the Human Female Brain. 
PLoS ONE 7(9): e45592. doi:10.1371/journal.pone.0045592

The researchers also looked at whether or not these blue spots were more (or less) frequent in the brains of women with Alzheimer’s disease compared to women who’d had no known neurological disease. Although their results hint at a possible association, it wasn’t significant. Because the pregnancy history of the women was largely unknown, there’s no real evidence here that pregnancy can heighten your Alzheimer’s risk or that being pregnant with or bearing a boy can help or hinder. As I discuss below, you can end up with some Y chromosome-bearing cells without ever having been pregnant.

Also, age could be an issue. Based on the reported age ranges of the group, the women without Alzheimer’s were on average younger at death (70 vs 79), with the youngest being only 32 (the youngest in Alzheimer’s group at death was 54). No one knows if the women who died at younger ages might later have developed Alzheimer’s. 

Indeed, most of this group–Alzheimer’s or not–had these Y-chromosome cells present in the brain. The authors say that 18 of the 26 samples from women who’d had no neurologic disease were positive for these “male” cells–that’s 69%–while 19 of the 33 who had Alzheimer’s were. That’s 58%. In other words, a greater percentage of women who’d not had Alzheimer’s in life were carrying around these male-positive cells compared to women who had developed Alzheimer’s. The age difference might also matter here, though, if these microchimeric cells tend to fade with age, although the researchers did get a positive result in the brain of a woman who was 94 when she died.

Thus, the simple fact of having male-positive cells (ETA: or not enough of them) in the brain doesn’t mean You Will Develop Alzheimer’s, which is itself a complex disease with many contributing factors. The researchers looked at this potential link because some studies have found a higher rate of Alzheimer’s among women who’ve been pregnant compared to women who have not and an earlier onset among women with a history of pregnancy. The possible reasons for this association range from false correlation to any number of effects of pregnancy, childbearing, or parenting.

Nothing about this study means that migration of fetal cells to the brain is limited to cells carrying Y chromosomes. It’s just that in someone who is XX, it’s pretty straightforward to find a Y chromosome gene. Finding a “foreign” X-linked gene in an XX person would be much more difficult. Also, a woman doesn’t have to have borne a pregnancy to term to have acquired these fetal cells. As the authors observe, even women without sons can have these Y-associated cells from pregnancies that were aborted or ended prematurely or from a “vanished” male twin in a pregnancy that did go to term. 

In fact, a woman doesn’t even have to have ever been pregnant at all to be carrying some cells with Y chromosomes. Another way you can end up with Y chromosome cells in an XX chromosome body is–get this–from having an older male sibling who, presumably, left a few cellular gifts behind in the womb where you later developed. As the oldest sibling, I can only assume I could have done the same for the siblings who followed me. So, if you’ve got an older sibling and have been pregnant before–could you be a double microchimera? 

But wait. You could even be a triple microchimera! This microchimerism thing can be a two-way street. If you’re a woman with biological children, those children already carry around part of you in the nuclear DNA you contributed and all of the mitochondria (including mitochondrial DNA) in all of their cells. Yes, they get more DNA from you than from the father. But they might also be toting complete versions of your cells, just as you have cells from them, although fetus–>mother transfer is more common than mother–>fetus transfer. The same could have happened between you and your biological mother. If so, a woman could potentially be living with cells from her mother, older sibling, and her children mixed in with her own boring old self cells.

The triple microchimera thing might be a tad dizzying, particularly the idea that you could be walking around with your mother’s and sibling’s cells hanging out in You, a whole new level of family relationships. But if you’re a biological mother, perhaps you might find it comforting to know that a cellular part of you may accompany your child everywhere, even as your child is always on your mind–and possibly in it, too.