Friday Roundup: dissolving mice, preschooler paleontologist, evolution cake, and more 2011 retrospective

Burrunan dolphin, a new species discovered in 2011

Cool science and science ewwws

Health

  • Pertussis making comeback, possibly because of adjustments to the older vaccine in response to seizures

Fun

  • Evolution cake: the be-all and end-all of evolution in cake form.

And a video! 


Watch four-year-old Stella school a toymaker on misidentification of a dinosaur on packaging. Video:



Science education

More of the year in science

Biology Explainer: The big 4 building blocks of life–carbohydrates, fats, proteins, and nucleic acids

The short version
  • The four basic categories of molecules for building life are carbohydrates, lipids, proteins, and nucleic acids.
  • Carbohydrates serve many purposes, from energy to structure to chemical communication, as monomers or polymers.
  • Lipids, which are hydrophobic, also have different purposes, including energy storage, structure, and signaling.
  • Proteins, made of amino acids in up to four structural levels, are involved in just about every process of life.                                                                                                      
  • The nucleic acids DNA and RNA consist of four nucleotide building blocks, and each has different purposes.
The longer version
Life is so diverse and unwieldy, it may surprise you to learn that we can break it down into four basic categories of molecules. Possibly even more implausible is the fact that two of these categories of large molecules themselves break down into a surprisingly small number of building blocks. The proteins that make up all of the living things on this planet and ensure their appropriate structure and smooth function consist of only 20 different kinds of building blocks. Nucleic acids, specifically DNA, are even more basic: only four different kinds of molecules provide the materials to build the countless different genetic codes that translate into all the different walking, swimming, crawling, oozing, and/or photosynthesizing organisms that populate the third rock from the Sun.

                                                  

Big Molecules with Small Building Blocks

The functional groups, assembled into building blocks on backbones of carbon atoms, can be bonded together to yield large molecules that we classify into four basic categories. These molecules, in many different permutations, are the basis for the diversity that we see among living things. They can consist of thousands of atoms, but only a handful of different kinds of atoms form them. It’s like building apartment buildings using a small selection of different materials: bricks, mortar, iron, glass, and wood. Arranged in different ways, these few materials can yield a huge variety of structures.

We encountered functional groups and the SPHONC in Chapter 3. These components form the four categories of molecules of life. These Big Four biological molecules are carbohydrates, lipids, proteins, and nucleic acids. They can have many roles, from giving an organism structure to being involved in one of the millions of processes of living. Let’s meet each category individually and discover the basic roles of each in the structure and function of life.
Carbohydrates

You have met carbohydrates before, whether you know it or not. We refer to them casually as “sugars,” molecules made of carbon, hydrogen, and oxygen. A sugar molecule has a carbon backbone, usually five or six carbons in the ones we’ll discuss here, but it can be as few as three. Sugar molecules can link together in pairs or in chains or branching “trees,” either for structure or energy storage.

When you look on a nutrition label, you’ll see reference to “sugars.” That term includes carbohydrates that provide energy, which we get from breaking the chemical bonds in a sugar called glucose. The “sugars” on a nutrition label also include those that give structure to a plant, which we call fiber. Both are important nutrients for people.

Sugars serve many purposes. They give crunch to the cell walls of a plant or the exoskeleton of a beetle and chemical energy to the marathon runner. When attached to other molecules, like proteins or fats, they aid in communication between cells. But before we get any further into their uses, let’s talk structure.

The sugars we encounter most in basic biology have their five or six carbons linked together in a ring. There’s no need to dive deep into organic chemistry, but there are a couple of essential things to know to interpret the standard representations of these molecules.

Check out the sugars depicted in the figure. The top-left molecule, glucose, has six carbons, which have been numbered. The sugar to its right is the same glucose, with all but one “C” removed. The other five carbons are still there but are inferred using the conventions of organic chemistry: Anywhere there is a corner, there’s a carbon unless otherwise indicated. It might be a good exercise for you to add in a “C” over each corner so that you gain a good understanding of this convention. You should end up adding in five carbon symbols; the sixth is already given because that is conventionally included when it occurs outside of the ring.

On the left is a glucose with all of its carbons indicated. They’re also numbered, which is important to understand now for information that comes later. On the right is the same molecule, glucose, without the carbons indicated (except for the sixth one). Wherever there is a corner, there is a carbon, unless otherwise indicated (as with the oxygen). On the bottom left is ribose, the sugar found in RNA. The sugar on the bottom right is deoxyribose. Note that at carbon 2 (*), the ribose and deoxyribose differ by a single oxygen.

The lower left sugar in the figure is a ribose. In this depiction, the carbons, except the one outside of the ring, have not been drawn in, and they are not numbered. This is the standard way sugars are presented in texts. Can you tell how many carbons there are in this sugar? Count the corners and don’t forget the one that’s already indicated!

If you said “five,” you are right. Ribose is a pentose (pent = five) and happens to be the sugar present in ribonucleic acid, or RNA. Think to yourself what the sugar might be in deoxyribonucleic acid, or DNA. If you thought, deoxyribose, you’d be right.

The fourth sugar given in the figure is a deoxyribose. In organic chemistry, it’s not enough to know that corners indicate carbons. Each carbon also has a specific number, which becomes important in discussions of nucleic acids. Luckily, we get to keep our carbon counting pretty simple in basic biology. To count carbons, you start with the carbon to the right of the non-carbon corner of the molecule. The deoxyribose or ribose always looks to me like a little cupcake with a cherry on top. The “cherry” is an oxygen. To the right of that oxygen, we start counting carbons, so that corner to the right of the “cherry” is the first carbon. Now, keep counting. Here’s a little test: What is hanging down from carbon 2 of the deoxyribose?

If you said a hydrogen (H), you are right! Now, compare the deoxyribose to the ribose. Do you see the difference in what hangs off of the carbon 2 of each sugar? You’ll see that the carbon 2 of ribose has an –OH, rather than an H. The reason the deoxyribose is called that is because the O on the second carbon of the ribose has been removed, leaving a “deoxyed” ribose. This tiny distinction between the sugars used in DNA and RNA is significant enough in biology that we use it to distinguish the two nucleic acids.

In fact, these subtle differences in sugars mean big differences for many biological molecules. Below, you’ll find a couple of ways that apparently small changes in a sugar molecule can mean big changes in what it does. These little changes make the difference between a delicious sugar cookie and the crunchy exoskeleton of a dung beetle.

Sugar and Fuel

A marathon runner keeps fuel on hand in the form of “carbs,” or sugars. These fuels provide the marathoner’s straining body with the energy it needs to keep the muscles pumping. When we take in sugar like this, it often comes in the form of glucose molecules attached together in a polymer called starch. We are especially equipped to start breaking off individual glucose molecules the minute we start chewing on a starch.

Double X Extra: A monomer is a building block (mono = one) and a polymer is a chain of monomers. With a few dozen monomers or building blocks, we get millions of different polymers. That may sound nutty until you think of the infinity of values that can be built using only the numbers 0 through 9 as building blocks or the intricate programming that is done using only a binary code of zeros and ones in different combinations.

Our bodies then can rapidly take the single molecules, or monomers, into cells and crack open the chemical bonds to transform the energy for use. The bonds of a sugar are packed with chemical energy that we capture to build a different kind of energy-containing molecule that our muscles access easily. Most species rely on this process of capturing energy from sugars and transforming it for specific purposes.

Polysaccharides: Fuel and Form

Plants use the Sun’s energy to make their own glucose, and starch is actually a plant’s way of storing up that sugar. Potatoes, for example, are quite good at packing away tons of glucose molecules and are known to dieticians as a “starchy” vegetable. The glucose molecules in starch are packed fairly closely together. A string of sugar molecules bonded together through dehydration synthesis, as they are in starch, is a polymer called a polysaccharide (poly = many; saccharide = sugar). When the monomers of the polysaccharide are released, as when our bodies break them up, the reaction that releases them is called hydrolysis.

Double X Extra: The specific reaction that hooks one monomer to another in a covalent bond is called dehydration synthesis because in making the bond–synthesizing the larger molecule–a molecule of water is removed (dehydration). The reverse is hydrolysis (hydro = water; lysis = breaking), which breaks the covalent bond by the addition of a molecule of water.

Although plants make their own glucose and animals acquire it by eating the plants, animals can also package away the glucose they eat for later use. Animals, including humans, store glucose in a polysaccharide called glycogen, which is more branched than starch. In us, we build this energy reserve primarily in the liver and access it when our glucose levels drop.

Whether starch or glycogen, the glucose molecules that are stored are bonded together so that all of the molecules are oriented the same way. If you view the sixth carbon of the glucose to be a “carbon flag,” you’ll see in the figure that all of the glucose molecules in starch are oriented with their carbon flags on the upper left.

The orientation of monomers of glucose in polysaccharides can make a big difference in the use of the polymer. The glucoses in the molecule on the top are all oriented “up” and form starch. The glucoses in the molecule on the bottom alternate orientation to form cellulose, which is quite different in its function from starch.

Storing up sugars for fuel and using them as fuel isn’t the end of the uses of sugar. In fact, sugars serve as structural molecules in a huge variety of organisms, including fungi, bacteria, plants, and insects.

The primary structural role of a sugar is as a component of the cell wall, giving the organism support against gravity. In plants, the familiar old glucose molecule serves as one building block of the plant cell wall, but with a catch: The molecules are oriented in an alternating up-down fashion. The resulting structural sugar is called cellulose.

That simple difference in orientation means the difference between a polysaccharide as fuel for us and a polysaccharide as structure. Insects take it step further with the polysaccharide that makes up their exoskeleton, or outer shell. Once again, the building block is glucose, arranged as it is in cellulose, in an alternating conformation. But in insects, each glucose has a little extra added on, a chemical group called an N-acetyl group. This addition of a single functional group alters the use of cellulose and turns it into a structural molecule that gives bugs that special crunchy sound when you accidentally…ahem…step on them.

These variations on the simple theme of a basic carbon-ring-as-building-block occur again and again in biological systems. In addition to serving roles in structure and as fuel, sugars also play a role in function. The attachment of subtly different sugar molecules to a protein or a lipid is one way cells communicate chemically with one another in refined, regulated interactions. It’s as though the cells talk with each other using a specialized, sugar-based vocabulary. Typically, cells display these sugary messages to the outside world, making them available to other cells that can recognize the molecular language.

Lipids: The Fatty Trifecta

Starch makes for good, accessible fuel, something that we immediately attack chemically and break up for quick energy. But fats are energy that we are supposed to bank away for a good long time and break out in times of deprivation. Like sugars, fats serve several purposes, including as a dense source of energy and as a universal structural component of cell membranes everywhere.

Fats: the Good, the Bad, the Neutral

Turn again to a nutrition label, and you’ll see a few references to fats, also known as lipids. (Fats are slightly less confusing that sugars in that they have only two names.) The label may break down fats into categories, including trans fats, saturated fats, unsaturated fats, and cholesterol. You may have learned that trans fats are “bad” and that there is good cholesterol and bad cholesterol, but what does it all mean?

Let’s start with what we mean when we say saturated fat. The question is, saturated with what? There is a specific kind of dietary fat call the triglyceride. As its name implies, it has a structural motif in which something is repeated three times. That something is a chain of carbons and hydrogens, hanging off in triplicate from a head made of glycerol, as the figure shows.  Those three carbon-hydrogen chains, or fatty acids, are the “tri” in a triglyceride. Chains like this can be many carbons long.

Double X Extra: We call a fatty acid a fatty acid because it’s got a carboxylic acid attached to a fatty tail. A triglyceride consists of three of these fatty acids attached to a molecule called glycerol. Our dietary fat primarily consists of these triglycerides.

Triglycerides come in several forms. You may recall that carbon can form several different kinds of bonds, including single bonds, as with hydrogen, and double bonds, as with itself. A chain of carbon and hydrogens can have every single available carbon bond taken by a hydrogen in single covalent bond. This scenario of hydrogen saturation yields a saturated fat. The fat is saturated to its fullest with every covalent bond taken by hydrogens single bonded to the carbons.

Saturated fats have predictable characteristics. They lie flat easily and stick to each other, meaning that at room temperature, they form a dense solid. You will realize this if you find a little bit of fat on you to pinch. Does it feel pretty solid? That’s because animal fat is saturated fat. The fat on a steak is also solid at room temperature, and in fact, it takes a pretty high heat to loosen it up enough to become liquid. Animals are not the only organisms that produce saturated fat–avocados and coconuts also are known for their saturated fat content.

The top graphic above depicts a triglyceride with the glycerol, acid, and three hydrocarbon tails. The tails of this saturated fat, with every possible hydrogen space occupied, lie comparatively flat on one another, and this kind of fat is solid at room temperature. The fat on the bottom, however, is unsaturated, with bends or kinks wherever two carbons have double bonded, booting a couple of hydrogens and making this fat unsaturated, or lacking some hydrogens. Because of the space between the bumps, this fat is probably not solid at room temperature, but liquid.

You can probably now guess what an unsaturated fat is–one that has one or more hydrogens missing. Instead of single bonding with hydrogens at every available space, two or more carbons in an unsaturated fat chain will form a double bond with carbon, leaving no space for a hydrogen. Because some carbons in the chain share two pairs of electrons, they physically draw closer to one another than they do in a single bond. This tighter bonding result in a “kink” in the fatty acid chain.

In a fat with these kinks, the three fatty acids don’t lie as densely packed with each other as they do in a saturated fat. The kinks leave spaces between them. Thus, unsaturated fats are less dense than saturated fats and often will be liquid at room temperature. A good example of a liquid unsaturated fat at room temperature is canola oil.

A few decades ago, food scientists discovered that unsaturated fats could be resaturated or hydrogenated to behave more like saturated fats and have a longer shelf life. The process of hydrogenation–adding in hydrogens–yields trans fat. This kind of processed fat is now frowned upon and is being removed from many foods because of its associations with adverse health effects. If you check a food label and it lists among the ingredients “partially hydrogenated” oils, that can mean that the food contains trans fat.

Double X Extra: A triglyceride can have up to three different fatty acids attached to it. Canola oil, for example, consists primarily of oleic acid, linoleic acid, and linolenic acid, all of which are unsaturated fatty acids with 18 carbons in their chains.

Why do we take in fat anyway? Fat is a necessary nutrient for everything from our nervous systems to our circulatory health. It also, under appropriate conditions, is an excellent way to store up densely packaged energy for the times when stores are running low. We really can’t live very well without it.

Phospholipids: An Abundant Fat

You may have heard that oil and water don’t mix, and indeed, it is something you can observe for yourself. Drop a pat of butter–pure saturated fat–into a bowl of water and watch it just sit there. Even if you try mixing it with a spoon, it will just sit there. Now, drop a spoon of salt into the water and stir it a bit. The salt seems to vanish. You’ve just illustrated the difference between a water-fearing (hydrophobic) and a water-loving (hydrophilic) substance.

Generally speaking, compounds that have an unequal sharing of electrons (like ions or anything with a covalent bond between oxygen and hydrogen or nitrogen and hydrogen) will be hydrophilic. The reason is that a charge or an unequal electron sharing gives the molecule polarity that allows it to interact with water through hydrogen bonds. A fat, however, consists largely of hydrogen and carbon in those long chains. Carbon and hydrogen have roughly equivalent electronegativities, and their electron-sharing relationship is relatively nonpolar. Fat, lacking in polarity, doesn’t interact with water. As the butter demonstrated, it just sits there.

There is one exception to that little maxim about fat and water, and that exception is the phospholipid. This lipid has a special structure that makes it just right for the job it does: forming the membranes of cells. A phospholipid consists of a polar phosphate head–P and O don’t share equally–and a couple of nonpolar hydrocarbon tails, as the figure shows. If you look at the figure, you’ll see that one of the two tails has a little kick in it, thanks to a double bond between the two carbons there.

Phospholipids form a double layer and are the major structural components of cell membranes. Their bend, or kick, in one of the hydrocarbon tails helps ensure fluidity of the cell membrane. The molecules are bipolar, with hydrophilic heads for interacting with the internal and external watery environments of the cell and hydrophobic tails that help cell membranes behave as general security guards.

The kick and the bipolar (hydrophobic and hydrophilic) nature of the phospholipid make it the perfect molecule for building a cell membrane. A cell needs a watery outside to survive. It also needs a watery inside to survive. Thus, it must face the inside and outside worlds with something that interacts well with water. But it also must protect itself against unwanted intruders, providing a barrier that keeps unwanted things out and keeps necessary molecules in.

Phospholipids achieve it all. They assemble into a double layer around a cell but orient to allow interaction with the watery external and internal environments. On the layer facing the inside of the cell, the phospholipids orient their polar, hydrophilic heads to the watery inner environment and their tails away from it. On the layer to the outside of the cell, they do the same.
As the figure shows, the result is a double layer of phospholipids with each layer facing a polar, hydrophilic head to the watery environments. The tails of each layer face one another. They form a hydrophobic, fatty moat around a cell that serves as a general gatekeeper, much in the way that your skin does for you. Charged particles cannot simply slip across this fatty moat because they can’t interact with it. And to keep the fat fluid, one tail of each phospholipid has that little kick, giving the cell membrane a fluid, liquidy flow and keeping it from being solid and unforgiving at temperatures in which cells thrive.

Steroids: Here to Pump You Up?

Our final molecule in the lipid fatty trifecta is cholesterol. As you may have heard, there are a few different kinds of cholesterol, some of which we consider to be “good” and some of which is “bad.” The good cholesterol, high-density lipoprotein, or HDL, in part helps us out because it removes the bad cholesterol, low-density lipoprotein or LDL, from our blood. The presence of LDL is associated with inflammation of the lining of the blood vessels, which can lead to a variety of health problems.

But cholesterol has some other reasons for existing. One of its roles is in the maintenance of cell membrane fluidity. Cholesterol is inserted throughout the lipid bilayer and serves as a block to the fatty tails that might otherwise stick together and become a bit too solid.

Cholesterol’s other starring role as a lipid is as the starting molecule for a class of hormones we called steroids or steroid hormones. With a few snips here and additions there, cholesterol can be changed into the steroid hormones progesterone, testosterone, or estrogen. These molecules look quite similar, but they play very different roles in organisms. Testosterone, for example, generally masculinizes vertebrates (animals with backbones), while progesterone and estrogen play a role in regulating the ovulatory cycle.

Double X Extra: A hormone is a blood-borne signaling molecule. It can be lipid based, like testosterone, or short protein, like insulin.

Proteins

As you progress through learning biology, one thing will become more and more clear: Most cells function primarily as protein factories. It may surprise you to learn that proteins, which we often talk about in terms of food intake, are the fundamental molecule of many of life’s processes. Enzymes, for example, form a single broad category of proteins, but there are millions of them, each one governing a small step in the molecular pathways that are required for living.

Levels of Structure

Amino acids are the building blocks of proteins. A few amino acids strung together is called a peptide, while many many peptides linked together form a polypeptide. When many amino acids strung together interact with each other to form a properly folded molecule, we call that molecule a protein.

For a string of amino acids to ultimately fold up into an active protein, they must first be assembled in the correct order. The code for their assembly lies in the DNA, but once that code has been read and the amino acid chain built, we call that simple, unfolded chain the primary structure of the protein.

This chain can consist of hundreds of amino acids that interact all along the sequence. Some amino acids are hydrophobic and some are hydrophilic. In this context, like interacts best with like, so the hydrophobic amino acids will interact with one another, and the hydrophilic amino acids will interact together. As these contacts occur along the string of molecules, different conformations will arise in different parts of the chain. We call these different conformations along the amino acid chain the protein’s secondary structure.

Once those interactions have occurred, the protein can fold into its final, or tertiary structure and be ready to serve as an active participant in cellular processes. To achieve the tertiary structure, the amino acid chain’s secondary interactions must usually be ongoing, and the pH, temperature, and salt balance must be just right to facilitate the folding. This tertiary folding takes place through interactions of the secondary structures along the different parts of the amino acid chain.

The final product is a properly folded protein. If we could see it with the naked eye, it might look a lot like a wadded up string of pearls, but that “wadded up” look is misleading. Protein folding is a carefully regulated process that is determined at its core by the amino acids in the chain: their hydrophobicity and hydrophilicity and how they interact together.

In many instances, however, a complete protein consists of more than one amino acid chain, and the complete protein has two or more interacting strings of amino acids. A good example is hemoglobin in red blood cells. Its job is to grab oxygen and deliver it to the body’s tissues. A complete hemoglobin protein consists of four separate amino acid chains all properly folded into their tertiary structures and interacting as a single unit. In cases like this involving two or more interacting amino acid chains, we say that the final protein has a quaternary structure. Some proteins can consist of as many as a dozen interacting chains, behaving as a single protein unit.

A Plethora of Purposes

What does a protein do? Let us count the ways. Really, that’s almost impossible because proteins do just about everything. Some of them tag things. Some of them destroy things. Some of them protect. Some mark cells as “self.” Some serve as structural materials, while others are highways or motors. They aid in communication, they operate as signaling molecules, they transfer molecules and cut them up, they interact with each other in complex, interrelated pathways to build things up and break things down. They regulate genes and package DNA, and they regulate and package each other.

As described above, proteins are the final folded arrangement of a string of amino acids. One way we obtain these building blocks for the millions of proteins our bodies make is through our diet. You may hear about foods that are high in protein or people eating high-protein diets to build muscle. When we take in those proteins, we can break them apart and use the amino acids that make them up to build proteins of our own.

Nucleic Acids

How does a cell know which proteins to make? It has a code for building them, one that is especially guarded in a cellular vault in our cells called the nucleus. This code is deoxyribonucleic acid, or DNA. The cell makes a copy of this code and send it out to specialized structures that read it and build proteins based on what they read. As with any code, a typo–a mutation–can result in a message that doesn’t make as much sense. When the code gets changed, sometimes, the protein that the cell builds using that code will be changed, too.

Biohazard!The names associated with nucleic acids can be confusing because they all start with nucle-. It may seem obvious or easy now, but a brain freeze on a test could mix you up. You need to fix in your mind that the shorter term (10 letters, four syllables), nucleotide, refers to the smaller molecule, the three-part building block. The longer term (12 characters, including the space, and five syllables), nucleic acid, which is inherent in the names DNA and RNA, designates the big, long molecule.

DNA vs. RNA: A Matter of Structure

DNA and its nucleic acid cousin, ribonucleic acid, or RNA, are both made of the same kinds of building blocks. These building blocks are called nucleotides. Each nucleotide consists of three parts: a sugar (ribose for RNA and deoxyribose for DNA), a phosphate, and a nitrogenous base. In DNA, every nucleotide has identical sugars and phosphates, and in RNA, the sugar and phosphate are also the same for every nucleotide.

So what’s different? The nitrogenous bases. DNA has a set of four to use as its coding alphabet. These are the purines, adenine and guanine, and the pyrimidines, thymine and cytosine. The nucleotides are abbreviated by their initial letters as A, G, T, and C. From variations in the arrangement and number of these four molecules, all of the diversity of life arises. Just four different types of the nucleotide building blocks, and we have you, bacteria, wombats, and blue whales.

RNA is also basic at its core, consisting of only four different nucleotides. In fact, it uses three of the same nitrogenous bases as DNA–A, G, and C–but it substitutes a base called uracil (U) where DNA uses thymine. Uracil is a pyrimidine.

DNA vs. RNA: Function Wars

An interesting thing about the nitrogenous bases of the nucleotides is that they pair with each other, using hydrogen bonds, in a predictable way. An adenine will almost always bond with a thymine in DNA or a uracil in RNA, and cytosine and guanine will almost always bond with each other. This pairing capacity allows the cell to use a sequence of DNA and build either a new DNA sequence, using the old one as a template, or build an RNA sequence to make a copy of the DNA.

These two different uses of A-T/U and C-G base pairing serve two different purposes. DNA is copied into DNA usually when a cell is preparing to divide and needs two complete sets of DNA for the new cells. DNA is copied into RNA when the cell needs to send the code out of the vault so proteins can be built. The DNA stays safely where it belongs.

RNA is really a nucleic acid jack-of-all-trades. It not only serves as the copy of the DNA but also is the main component of the two types of cellular workers that read that copy and build proteins from it. At one point in this process, the three types of RNA come together in protein assembly to make sure the job is done right.


 By Emily Willingham, DXS managing editor 
This material originally appeared in similar form in Emily Willingham’s Complete Idiot’s Guide to College Biology

Pregnancy 101: My placenta looked like meatloaf, but I wasn’t about to eat it.

By Jeanne Garbarino, Biology Editor
An historic view interpretation of the placenta (source). 

She gave me a few minutes to meet my daughter before she reeled me back into a state that was my new reality.  “You’re not finished Jeanne.  You still need to birth your placenta.”  What?!?! More pushing? But I was lucky and the efforts required to bring my placenta ex vivo were minimal. 

This is the second placenta my body helped make.  OK,
so it doesn’t EXACTLY look like meatloaf…  

The idea of a placenta, which is the only human organ to completely and temporarily develop after birth, was fascinating.  That thing sitting in a rectangular periwinkle bucket was what allowed me to grow another human.. inside of my body!  There was no way I was not going to check it out, as well as create a permanent record of its relatively short-lived existence. 

My first impression was that it looked like “meatloaf.”  Not necessarily a well made meatloaf, but perhaps one that is made by my mother (sorry mom).  But, alas, chaos reigned and I wasn’t able to really take a good look.  However, for my second birth and hence second placenta, my midwife indulged me with a more detailed look and a mini-lesson.   

Baby’s eye view:
Where geekling deux spent 39 weeks and 4 days. 

Her gloved hands, still wet with my blood and amniotic fluid, slid into the opening that was artificially created with a tool resembling a crocheting needle.  She opened the amniotic sac wide so I could get a baby’s eye view of the crimson organ that served as a nutritional trading post between me and my new bundle of joy. 

She explained that the word “placenta” comes from from the Greek word plakoeis, which translates to “flat cake” (however, I’m sure if my mom’s meatloaf was more common in ancient Greece, the placenta would be named differently).   “It’s one of the defining features of being a mammal,” she explained as I was working on another mammalian trait – getting my baby to nurse for the first time.

That was about all I could mentally digest at the time, but still, more than three years later, the placenta continues to fascinate me, mostly due to the fact that it is responsible for growing new life.  It’s a natural topic for this long overdue Pregnancy101post, so let’s dive in!
Development of the placenta
It all starts when a fertilized egg implants itself into the wall of the uterus.  But, in order to fully understand how it works, we should start with an overview of the newly formed embryo. 

The very early stages of us (and many other things that are alive).
The trophoblast invades the uterus,
leading to implantation of the blastocyst.

As soon as a male sperm cell fuses with a female egg cell, fertilization occurs and the cells begin to multiply.  But, they remain contained within a tiny sphere.  As the cells continue to divide, they are given precise instructions depending on their location within that sphere, and begin to transform into specific cell types.  This process, which is called cellular differentiation, actually seals the fate every cell in our body, sort of like how we all have different jobs – some of us are transport things, some of us are involved in policing the neighborhoods, some of us build structures, some of us communicate information, some of us deal with food, some of us get rid of waste, etc.  Every cell gets a job (it’s the only example of 100% employment rates!).

Now back to the cells in the fertilized egg.  As they start to learn what their specific job will be, the cells within the sphere will start to organize themselves.  After about 5 days after fertilization, the sphere of cells becomes something called a blastocyst, which readies itself for implantationinto the wall of the uterus. 

The act of implantation is largely due to the cells found on the perimeter of the blastocyst sphere.  These cells, collectively known as the trophoblast, release a very important hormone – human chorionic gonadotropin (hCG) – that tells the uterus to prepare for it’s new tenant.  (If you recall, hCG is the hormone picked up by pregnancy tests.)  Around day 7, the trophoblast cells start to invade the lining of the uterus, and begin to form the placenta.  It is at this point that pregnancy officially begins.  (Here is a cool video, created by the UNSW Embryology Department, showing the process of implantation.)

Structure of the placenta

Eventually the trophoblast becomes the recognizable organ that is the placenta.  Consider the “flat cake” analogy, with the top of the cake being the fetal side (the side that is in contact with the baby), and the bottom of the cake being the maternal side (the side that is in contact with the mother).     

Cross section of the placenta: Blood vessels originating from the fetus sit in a pool
of maternal blood, which is constantly replenished my maternal arteries and veins.
The red represents oxygenated blood, and the blue represents de-oxygenated blood.

Projecting from the center of the fetal side of the placenta are two arteries and one vein, coiled together in a long, rubbery rope, often bluish-grey in color.   This umbilical cord serves as the tunnel through which nutrients and waste are shuttled, and essentially serves to plug the baby into the mother’s metabolic processes.  At the umbilical cord-placenta nexus, the umbilical cord arteries and vein branch out into a network of blood vessels, which further divide into a tree-like mass of vessels within the placenta. 

These tree-like masses originating from the umbilical cord (and thus fetus) sit in a cavity called the intervillous space, and are bathed in nutrient-rich maternal blood.  This maternal blood, which provides the fetus with a means for both nutrient delivery and waste elimination, is continually replenished via a network of maternal arteries and veins that feed into the intervillous space.  Furthermore, these arteries and veins help to anchor the placenta into the uterine wall.  One of the most interesting aspects about the mother-feus relationship is that the blood vessel connection is indirect.  This helps to prevent a detrimental immune response, which could lead to immunological rejection of the fetus (sort of like how a transplanted organ can become rejected by the recipient).  
Functions of the placenta

Just like a plant needs sunlight, oxygen, and water to grow, a baby needs all sorts of nutrients to develop.  And since a baby also produces waste, by nature of it being alive and all, there is an absolute requirement for waste removal.  However, because we can’t just give a developing fetus food or a bottle, nor are we able to change diapers in utero, the onus lies completely on the biological mother. 

This is where the placenta comes in. Because the fetus is plugged into the circulatory system of the mother via the umbilical cord and placenta, the fetus is provided with necessary nutrients and a mechanism to get rid of all the byproducts of metabolism.  Essentially, the placenta acts as a waitress of sorts – providing the food, and cleaning it all up when the fetus is done eating. 

But it’s not just about nutrition and waste.  The placenta also serves as a hormone factory, making and secreting biological chemicals to help sustain the pregnancy.  I mentioned above that the placenta produces hCG, which pretty much serves as a master regulator for pregnancy in that it helps control the production of maternally produced hormones, estrogen and progesterone.  It also helps to suppress the mother’s immunological response to the placenta (along with other factors), which cloaks the growing baby, thereby hiding it from being viewed as a “foreign” invader (like a virus or bacteria). 

Another hormone produced by the placenta is human placental lactogen (hPL), which tells the mother to increase her mammary tissue.  This helps mom prepare for nursing her baby once it’s born, and is the primary reason why our boobs tend to get bigger when we are pregnant.  (Yay for big boobies, but my question is, what the hell transforms our rear ends into giant double cheeseburgers, and what biological purpose does that serve??  But I digress…)

Despite the fact that the mother’s circulatory system remains separate from the baby’s circulatory system, there are a clear mixing of metabolic products (nutrients, waste, hormones, etc).  In essence, if it is in mom’s blood stream, it will very likely pass into baby’s blood stream.  This is the very reason that pregnant mothers are strongly advised to stay away from cigarettes, drugs, alcohol, and other toxic chemicals, all of which can easily pass through the placental barrier lying between mother and fetus.  When moms do not heed this warning, the consequences can be devastating to the developing fetus, potentially leading to birth defects or even miscarriage.        

There are also situations that could compromise the functions of the placenta – restriction of blood supply, loss of placental tissue, muted placental growth, just to name a few – reducing the chances of getting and/or staying pregnant.  This placental insufficiency is generally accompanied by slow growth of the uterus, low rate of weight gain, and most importantly, reduced fetal growth.     

And it’s not just the growth of the placenta that is important – where the placenta attaches to the uterus is also very important.  When the placenta grows on top of the opening of the birth canal, the chances for a normal, vaginal birth are obliterated.  This condition, known as placenta previa, is actually quite dangerous and can cuase severe bleeding in the third trimester.  0.5% of all women experience this, and it is one of the true medical conditions that absolutely requires a C-section. 

Then, there is the issue of attachment.  If the placenta doesn’t attach well to the uterus, it could end up peeling away from the uterine wall, which can cause vaginal bleeding, as well as deprive the baby from nutrient delivery and waste disposal.  This abruption of the placenta  is complicated by the use of drugs, smoking, blood clotting disorders, high blood pressure, or if the mother has diabetes or a history of placental abruption. 

Conversely, there are times when the blood vessels originating from the placenta implant too deeply into the uterus, which can lead to a placenta accreta.  If this occurs, the mother generally delivers via C-section, followed by a complete hysterectomy. 

Cultural norms and the placenta

There are many instances where the placenta plays a huge role in the culture of a society.  For instance, both the Maori people of New Zealand and the Navajopeople of Southwestern US will bury the placenta.  There is also some folklore associated with the placenta, and several societies believe that it is alive, pehaps serving as a friend for the baby.   But the tradition that seems to be making it’s way into the granola culture of the US is one that can be traced back to traditional Chinese practices: eating the placenta. 

Placentophagy, or eating one’s own placenta, is very common among a variety of mammalian species.  Biologically speaking, it is thought that animals that eat their own placenta do so to hide fresh births from predators, thereby increasing the chances of their babies’ survival.  Others have suggested that eating the nutrient-rich placenta helps mothers to recover after giving birth.

However, these days, a growing number of new mothers are opting to ingest that which left their own body (likely) through their own vaginas.  And they are doing so though a very expensive process involving dehydrating and encapsulating placental tissue.  

Why would one go through this process?  The claims are that placentophagy will help ward of post partum depression, increase the supply of milk in a lactating mother, and even slow down the ageing process.  But, alas, these are some pretty bold claims that are substantiated only by anecdata, and not actual science (see this).

So, even though my placentas looked like meatloaf, there was no way I was eating them.  If you are considering this, I’d approach the issue with great skepticism.  There are many a people who will take advantage of maternal vulnerabilities in the name of cold hard cash.  And, always remember, if the claims sound to good to be true, they probably are!   


Thanks for tuning into this issue of Pregnancy101, and enjoy this hat, and a video!

Source


Biology Xplainer: Evolution and how it happens

Evolution: a population changes over time
First of all, in the context of science, you should never speak of evolution as a “theory.” There is no theory about whether or not evolution happens. It is a fact.

Scientists have, however, developed tested theories about how evolution happens. Although several proposed and tested processes or mechanisms exist, the most prominent and most studied, talked about, and debated, is Charles Darwin’s idea that the choices of nature guide these changes. The fame and importance of his idea, natural selection, has eclipsed the very real existence of other ways that populations can change over time.

Evolution in the biological sense does not occur in individuals, and the kind of evolution we’re talking about here isn’t about life’s origins. Evolution must happen at least at the populationlevel. In other words, it takes place in a group of existing organisms, members of the same species, often in a defined geographical area.

We never speak of individuals evolving in the biological sense. The population, a group of individuals of the same species, is the smallest unit of life that evolves.

To get to the bottom of what happens when a population changes over time, we must examine what’s happening to the gene combinations of the individuals in that population. The most precise way to talk about evolution in the biological sense is to define it as “a change in the allele frequency of a population over time.” A gene, which contains the code for a protein, can occur in different forms, or alleles. These different versions can mean that the trait associated with that protein can differ among individuals. Thanks to mutations, a gene for a trait can exist in a population in these different forms. It’s like having slightly different recipes for making the same cake, each producing a different version of the cake, except in this case, the “cake” is a protein.
Natural selection: One way evolution happens

Charles Darwin, a smart, thoughtful,
observant man. Via Wikimedia.
Charles Darwin, who didn’t know anything about alleles or even genes (so now you know more than he did on that score), understood from his work and observations that nature makes certain choices, and that often, what nature chooses in specific individuals turns up again in the individuals’ offspring. He realized that these characteristics that nature was choosing must pass to some offspring. This notion of heredity–that a feature encoded in the genes can be transmitted to your children–is inherent now in the theory of natural selection and a natural one for most people to accept. In science, an observable or measurable feature or characteristic is called a phenotype, and the genes that are the code for it are called its genotype. The color of my eyes (brown) is a phenotype, and the alleles of the eye color genes I have are the genotype.

What is nature selecting any individual in a population to do? In the theory of natural selection, nature chooses individuals that fit best into the current environment to pass along their “good-fit” genes, either through reproduction or indirectly through supporting the reproducer. Nature chooses organisms to survive and pass along those good-fit genes, so they have greater fitness.

Fitness is an evolutionary concept related to an organism’s reproductive success, either directly (as a parent) or indirectly (say, as an aunt or cousin). It is measured technically based on the proportion of an individual’s alleles that are represented in the next generation. When we talk about “fitness” and “the fittest,” remember that fittest does not mean strong. It relates more to a literal fit, like a square peg in a square hole, or a red dot against a red background. It doesn’t matter if the peg or dot is strong, just whether or not it fits its environment.

One final consideration before we move onto a synthesis of these ideas about differences, heredity, and reproduction: What would happen if the population were uniformly the same genetically for a trait? Well, when the environment changed, nature would have no choice to make. Without a choice, natural selection cannot happen–there is nothing to select. And the choice has to exist already; it does not typically happen in response to a need that the environment dictates. Usually, the ultimate origin for genetic variation–which underlies this choice–is mutation, or a change in a DNA coding sequence, the instructions for building a protein.

Don’t make the mistake of saying that an organism adapts by mutating in response to the environment. The mutations (the variation) must already be present for nature to make a choice based on the existing environment.

The Modern Synthesis

When Darwin presented his ideas about nature’s choices in an environmental context, he did so in a book with a very long title that begins, On the Origin of Species by Means of Natural Selection. Darwinknew his audience and laid out his argument clearly and well, with one stumbling block: How did all that heredity stuff actually work?

We now know–thanks to a meticulous scientist named Gregor Mendel (who also was a monk), our understanding of reproductive cell division, and modern genetics–exactly how it all works. Our traits–whether winners or losers in the fitness Olympics–have genes that determine them. These genes exist in us in pairs, and these pairs separate during division of our reproductive cells so that our offspring receive one member or the other of the pair. When this gene meets its coding partner from the other parent’s cell at fertilization, a new gene pair arises. This pairing may produce a similar outcome to one of the parents or be a novel combination that yields some new version of a trait. But this separating and pairing is how nature keeps things mixed up, setting up choices for selection.

Ernst Mayr, via PLoS.
With a growing understanding in the twentieth century of genetics and its role in evolution by means of natural selection, a great evolutionary biologist named Ernst Mayr (1904–2005) guided a meshing of genetics and evolution (along with other brilliant scientists including Theodosius Dobzhansky, George Simpson, and R.A. Fisher) into what is called The Modern Synthesis. This work encapsulates (dare I say, “synthesizes?”) concisely and beautifully the tenets of natural selection in the context of basic genetic inheritance. As part of his work, Mayr distilled Darwin’s ideas into a series of facts and inferences.

Facts and Inferences

Mayr’s distillation consists of five facts and three inferences, or conclusions, to draw from those facts.
  1. The first fact is that populations have the potential to increase exponentially. A quick look at any graph of human population growth illustrates that we, as a species, appear to be recognizing that potential. For a less successful example, consider the sea turtle. You may have seen the videos of the little turtle hatchlings valiantly flippering their way across the sand to the sea, cheered on by the conservation-minded humans who tended their nests. What the cameras usually don’t show is that the vast majority of these turtle offspring will not live to reproduce. The potential for exponential growth is there, based on number of offspring produced, but…it doesn’t happen.
  2. The second fact is that not all offspring reproduce, and many populations are stable in size. See “sea turtles,” above.
  3. The third fact is that resources are limited. And that leads us to our first conclusion, or inference: there is a struggle among organisms for nutrition, water, habitat, mates, parental attention…the various necessities of survival, depending on the species. The large number of offspring, most of which ultimately don’t survive to reproduce, must compete, or struggle, for the limited resources.
  4. Fact four is that individuals differ from one another. Look around. Even bacteria of the same strain have their differences, with some more able than others to with stand an antibiotic onslaught. Look at a crowd of people. They’re all different in hundreds of ways.
  5. Fact five is that much about us that is different lies in our genes–it is inheritable. Heredity undeniably exists and underlies a lot of our variation.
So we have five facts. Now for the three inferences:

  1. First, there is that struggle for survival, thanks to so many offspring and limited resources. See “sea turtle,” again.
  2. Second, different traits will be passed on differentially. Put another way: Winner traits are more likely to be passed on.
  3. And that takes us to our final conclusion: if enough of these “winner” traits are passed to enough individuals in a population, they will accumulate in that population and change its makeup. In other words, the population will change over time. It will be adapted to its environment. It will evolve.
Other mechanisms of evolution

A pigeon depicted in Charles Darwin’s
Variation of Animals and Plants
Under Domestication
, 1868. U.S.
public domain image, via Wikimedia.
When Darwin presented his idea of natural selection, he knew he had an audience to win over. He pointed out that people select features of organisms all the time and breed them to have those features. Darwin himself was fond of breeding pigeons with a great deal of pigeony variety. He noted that unless the pigeons already possessed traits for us to choose, we not would have that choice to make. But we do have choices. We make super-woolly sheep, dachshunds, and heirloom tomatoes simply by selecting from the variation nature provides and breeding those organisms to make more with those traits. We change the population over time.

Darwin called this process of human-directed evolution artificial selection. It made great sense for Darwinbecause it helped his reader get on board. If people could make these kinds of choices and wreak these kinds of changes, why not nature? In the process, Darwin also described this second way evolution can happen: human-directed evolution. We’re awash in it today, from our accidental development of antibiotic-resistant bacteria to wheat that resists devastating rust.

Genetic drift: fixed or lost

What about traits that have no effect either way, that are just there? One possible example in us might be attached earlobes. Good? Bad? Ugly? Well…they don’t appear to have much to do with whether or not we reproduce. They’re just there.

When a trait leaves nature so apparently disinterested, the alleles underlying it don’t experience selection. Instead, they drift in one direction or another, to extinction or 100 percent frequency. When an allele drifts to disappearance, we say that it is lost from the population. When it drifts to 100 percent presence, we say that it has become fixed. This process of evolution by genetic drift reduces variation in a population. Eventually, everyone will have it, or no one will.

Gene flow: genes in, genes out

Another way for a population to change over time is for it to experience a new infusion of genes or to lose a lot of them. This process of gene flow into or out of the population occurs because of migration in or out. Either of these events can change the allele frequency in a population, and that means that gene flow is another was that evolution can happen.

If gene flow happens between two different species, as can occur more with plants, then not only has the population changed significantly, but the new hybrid that results could be a whole new species. How do you think we get those tangelos?

Horizontal gene transfer

One interesting mechanism of evolution is horizontal gene transfer. When we think of passing along genes, we usually envision a vertical transfer through generations, from parent to offspring. But what if you could just walk up to a person and hand over some of your genes to them, genes that they incorporate into their own genome in each of their cells?

Of course, we don’t really do that–at least, not much, not yet–but microbes do this kind of thing all the time. Viruses that hijack a cell’s genome to reproduce can accidentally leave behind a bit of gene and voila! It’s a gene change. Bacteria can reach out to other living bacteria and transfer genetic material to them, possibly altering the traits of the population.

Evolutionary events

Sometimes, events happen at a large scale that have huge and rapid effects on the overall makeup of a population. These big changes mark some of the turning points in the evolutionary history of many species.

Cheetahs underwent a bottleneck that
has left them with little genetic variation.
Photo credit: Malene Thyssen, via
Wikimedia. 
Bottlenecks: losing variation

The word bottleneck pretty much says it all. Something happens over time to reduce the population so much that only a relatively few individuals survive. A bottleneck of this sort reduces the variability of a population. These events can be natural–such as those resulting from natural disasters–or they can be human induced, such as species bottlenecks we’ve induced through overhunting or habitat reduction.

Founder effect: starting small

Sometimes, the genes flow out of a population. This flow occurs when individuals leave and migrate elsewhere. They take their genes with them (obviously), and the populations they found will initially carry only those genes. Whatever they had with them genetically when they founded the population can affect that population. If there’s a gene that gives everyone a deadly reaction to barbiturates, that population will have a higher-than-usual frequency of people with that response, thanks to this founder effect.

Gene flow leads to two key points to make about evolution: First, a population carries only the genes it inherits and generally acquires new versions through mutation or gene flow. Second, that gene for lethal susceptibility to a drug would be meaningless in a natural selection context as long as the environment didn’t include exposure to that drug. The take-home message is this: What’s OK for one environment may or may not be fit for another environment. The nature of Nature is change, and Nature offers no guarantees.

Hardy-Weinberg: when evolution is absent

With all of these possible mechanisms for evolution under their belts, scientists needed a way to measure whether or not the frequency of specific alleles was changing over time in a given population or staying in equilibrium. Not an easy job. They found–“they” being G. H. Hardy and Wilhelm Weinberg–that the best way to measure this was to predict what the outcome would be if there were no change in allele frequencies. In other words, to predict that from generation to generation, allele frequencies would simply stay in equilibrium. If measurements over time yielded changing frequencies, then the implication would be that evolution has happened.

Defining “Not Evolving”

So what does it mean to not evolve? There are some basic scenarios that must exist for a population not to be experiencing a change in allele frequency, i.e., no evolution. If there is a change, then one of the items in the list below must be false:

·       Very large population (genetic drift can be a strong evolutionary mechanism in small populations)

·       No migrations (in other words, no gene flow)

·       No net mutations (no new variation introduced)

·       Random mating (directed mating is one way nature selects organisms)

·       No natural selection

In other words, a population that is not evolving is experiencing a complete absence of evolutionary processes. If any one of these is absent from a given population, then evolution is occurring and allele frequencies from generation to generation won’t be in equilibrium.

Convergent Evolution

Arguably the most famous of the
egg-laying monotremes, the improbable-
seeming platypus. License.
One of the best examples of the influences of environmental pressures is what happens in similar environments a world apart. Before the modern-day groupings of mammals arose, the continent of Australiaseparated from the rest of the world’s land masses, taking the proto-mammals that lived there with it. Over the ensuing millennia, these proto-mammals in Australiaevolved into the native species we see today on that continent, all marsupialsor monotremes.

Among mammals, there’s a division among those that lay eggs (monotremes), those that do most gestating in a pouch rather than a uterus (marsupials), and eutherians, which use a uterus for gestation (placental mammals).

Elsewhere in the world, most mammals developed from a common eutherian ancestor and, where marsupials still persisted, probably outcompeted them. In spite of this lengthy separation and different ancestry, however, for many of the examples of placental mammals, Australiahas a similar marsupial match. There’s the marsupial rodent that is like the rat. The marsupial wolf that is like the placental wolf. There’s even a marsupial anteater to match the placental one.

How did that happen an ocean apart with no gene flow? The answer is natural selection. The environment that made an organism with anteater characteristics best fit in South America was similar to the environment that made those characteristics a good fit in Australia. Ditto the rats, ditto the wolf.

When similar environments result in unrelated organisms having similar characteristics, we call that process convergent evolution. It’s natural selection in relatively unrelated species in parallel. In both regions, nature uses the same set of environmental features to mold organisms into the best fit.

By Emily Willingham, DXS managing editor

Note: This explanation of evolution and how it happens is not intended to be comprehensive or detailed or to include all possible mechanisms of evolution. It is simply an overview. In addition, it does not address epigenetics, which will be the subject of a different explainer.

Anorexia nervosa, neurobiology, and family-based treatment

Via Wikimedia Commons
Photo credit: Sandra Mann
By Harriet Brown, DXS contributor

Back in 1978, psychoanalyst Hilde Bruch published the first popular book on anorexia nervosa. In The Golden Cage, she described anorexia as a psychological illness caused by environmental factors: sexual abuse, over-controlling parents, fears about growing up, and/or other psychodynamic factors. Bruch believed young patients needed to be separated from their families (a concept that became known as a “parentectomy”) so therapists could help them work through the root issues underlying the illness. Then, and only then, patients would choose to resume eating. If they were still alive.

Bruch’s observations dictated eating-disorders treatments for decades, treatments that led to spectacularly ineffective results. Only about 35% of people with anorexia recovered; another 20% died, of starvation or suicide; and the rest lived with some level of chronic illness for the rest of their lives.

Not a great track record, overall, and especially devastating for women, who suffer from anorexia at a rate of 10 times that of men. Luckily, we know a lot more about anorexia and other eating disorders now than we did in 1978.

“It’s Not About the Food”

In Bruch’s day, anorexia wasn’t the only illness attributed to faulty parenting and/or trauma. Therapists saw depression, anxiety, schizophrenia, eating disorders, and homosexuality (long considered a psychiatric “illness”) as ailments of the mind alone. Thanks to the rising field of behavioral neuroscience, we’ve begun to untangle the ways brain circuitry, neural architecture, and other biological processes contribute to these disorders. Most experts now agree that depression and anxiety can be caused by, say, neurotransmitter imbalances as much as unresolved emotional conflicts, and treat them accordingly. But the field of eating-disorders treatment has been slow to jump on the neurobiology bandwagon. When my daughter was diagnosed with anorexia in 2005, for instance, we were told to find her a therapist and try to get our daughter to eat “without being the food police,” because, as one therapist informed us, “It’s not about the food.”

Actually, it is about the food. Especially when you’re starving.

Ancel Keys’ 1950 Semi-Starvation Study tracked the effects of starvation and subsequent re-feeding on 36 healthy young men, all conscientious objectors who volunteered for the experiment. Keys was drawn to the subject during World War II, when millions in war-torn Europe – especially those in concentration camps – starved for years. One of Keys’ most interesting findings was that starvation itself, followed by re-feeding after a period of prolonged starvation, produced both physical and psychological symptoms, including depression, preoccupation with weight and body image, anxiety, and obsessions with food, eating, and cooking—all symptoms we now associate with anorexia. Re-feeding the volunteers eventuallyreversed most of the symptoms. However, this approach proved to be difficult on a psychological level, and in some ways more difficult than the starvation period. These results were a clear illustration of just how profound the effects of months of starvation were on the body and mind.

Alas, Keys’ findings were pretty much ignored by the field of eating-disorders treatment for 40-some years, until new technologies like functional magnetic resonance imaging (fMRI) and research gave new context to his work. We now know there is no single root cause for eating disorders. They’re what researchers call multi-factorial, triggered by a perfect storm of factors that probably differs for each person who develops an eating disorder. “Personality characteristics, the environment you live in, your genetic makeup—it’s like a cake recipe,” says Daniel le Grange, Ph.D., director of the Eating Disorders Program at the University of Chicago. “All the ingredients have to be there for that person to develop anorexia.”

One of those ingredients is genetics. Twenty years ago, the Price Foundation sponsored a project that collected DNA samples from thousands of people with eating disorders, their families, and control participants. That data, along with information from the 2006 Swedish Twin Study, suggests that anorexia is highly heritable. “Genes play a substantial role in liability to this illness,” says Cindy Bulik, Ph.D., a professor of psychiatry and director of the University of North Carolina’s Eating Disorders Program. And while no one has yet found a specific anorexia gene, researchers are focusing on an area of chromosome 1 that shows important gene linkages.

Certain personality traits associated with anorexia are probably heritable as well. “Anxiety, inhibition, obsessionality, and perfectionism seem to be present in families of people with an eating disorder,” explains Walter Kaye, M.D., who directs the Eating Disorders Treatment and Research Program at the University of California-San Diego. Another ingredient is neurobiology—literally, the way your brain is structured and how it works. Dr. Kaye’s team at UCSD uses fMRI technology to map blood flow in people’s brains as they think of or perform a task. In one study, Kaye and his colleagues looked at the brains of people with anorexia, people recovered from anorexia, and people who’d never had an eating disorder as they played a gambling game. Participants were asked to guess a number and were rewarded for correct guesses with money or “punished” for incorrect or no guesses by losing money.

Participants in the control group responded to wins and losses by “living in the moment,” wrote researchers: “That is, they made a guess and then moved on to the next task.” But people with anorexia, as well as people who’d recovered from anorexia, showed greater blood flow to the dorsal caudate, an area of the brain that helps link actions and their outcomes, as well as differences in their brains’ dopamine pathways. “People with anorexia nervosa do not live in the moment,” concluded Kaye. “They tend to have exaggerated and obsessive worry about the consequences of their behaviors, looking for rules when there are none, and they are overly concerned about making mistakes.” This study was the first to show altered pathways in the brain even in those recovered from anorexia, suggesting that inherent differences in the brain’s architecture and signaling systems help trigger the illness in the first place.

Food Is Medicine

Some of the best news to come out of research on anorexia is a new therapy aimed at kids and teens. Family-based treatment (FBT), also known as the Maudsley approach, was developed at the Maudsley Hospital in London by Ivan Eisler and Christopher Dare, family therapists who watched nurses on the inpatient eating-disorders unit get patients to eat by sitting with them, talking to them, rubbing their backs, and supporting them. Eisler and Dare wondered how that kind of effective encouragement could be used outside the hospital.

Their observations led them to develop family-based treatment, or FBT, a three-phase treatment for teens and young adults that sidesteps the debate on etiology and focuses instead on recovery. “FBT is agnostic on cause,” says Dr. Le Grange. During phase one, families (usually parents) take charge of a child’s eating, with a goal of fully restoring weight (rather than get to the “90 percent of ideal body weight” many programs use as a benchmark). In phase two, families gradually transfer responsibility for eating back to the teen. Phase three addresses other problems or issues related to normal adolescent development, if there are any.

FBT is a pragmatic approach that recognizes that while people with anorexia are in the throes of acute malnourishment, they can’t choose to eat. And that represents one of the biggest shifts in thinking about eating disorders. The DSM-IV, the most recent “bible” of psychiatric treatment, lists as the first symptom of anorexia “a refusal to maintain body weight at or above a minimally normal weight for age and height.” That notion of refusal is key to how anorexia has been seen, and treated, in the past: as a refusal to eat or gain weight. An acting out. A choice. Which makes sense within the psychodynamic model of cause.

But it doesn’t jibe with the research, which suggests that anorexia is more of an inability to eat than a refusal. Forty-five years ago, Aryeh Routtenberg, then (and still) a professor of psychology at Northwestern University, discovered that when he gave rats only brief daily access to food but let them run as much as they wanted on wheels, they would gradually eat less and less, and run more and more. In fact, they would run without eating until they died, a paradigm Routtenberg called activity-based anorexia (ABA). Rats with ABA seemed to be in the grip of a profound physiological imbalance, one that overrode the normal biological imperatives of hunger and self-preservation. ABA in rats suggests that however it starts, once the cycle of restricting and/or compulsive exercising passes a certain threshold, it takes on a life of its own. Self-starvation is no longer (if it ever was) a choice, but a compulsion to the death.

That’s part of the thinking in FBT. Food is the best medicine for people with anorexia, but they can’t choose to eat. They need someone else to make that choice for them. Therapists don’t sit at the table with patients, but parents do. And parents love and know their children. Like the nurses at the Maudsley Hospital, they find ways to get kids to eat. In a sense, what parents do is outshout the anorexia “voice” many sufferers report hearing, a voice in their heads that tells them not to eat and berates them when they do. Parents take the responsibility for making the choice to eat away from the sufferer, who may insist she’s choosing not to eat but who, underneath the illness, is terrified and hungry.

The best aspect of FBT is that it works. Not for everyone, but for the majority of kids and teens. Several randomized controlled studies of FBT and “treatment as usual” (talk therapy without pressure to eat) show recovery rates of 80 to 90 percent with FBT—a huge improvement over previous recovery rates. A study at the University of Chicago is looking at adapting the treatment for young adults; early results are promising.

The most challenging aspect of FBT is that it’s hard to find. Relatively few therapists in the U.S. are trained in the approach. When our daughter got sick, my husband and I couldn’t find a local FBT therapist. So we cobbled together a team that included our pediatrician, a therapist, and lots of friends who supported our family through the grueling work of re-feeding our daughter. Today she’s a healthy college student with friends, a boyfriend, career goals, and a good relationship with us.

A few years ago, Dr. Le Grange and his research partner, Dr. James Lock of Stanford, created a training institute that certifies a handful of FBT therapists each year. (For a list of FBT providers, visit the Maudsley Parents website.) It’s a start. But therapists are notoriously slow to adopt new treatments, and FBT is no exception. Some therapists find FBT controversial because it upends the conventional view of eating disorders and treatments. Some cling to the psychodynamic view of eating disorders despite the lack of evidence. Still, many in the field have at least heard of FBT and Kaye’s neurobiological findings, even if they don’t believe in them yet.

Change comes slowly. But it comes.

* * *

Harriet Brown teaches magazine journalism at the S.I. Newhouse School of Public Communications in Syracuse, New York. Her latest book is Brave Girl Eating: A Family’s Struggle with Anorexia (William Morrow, 2010).

be there for that person to develop anorexia.”

One of those ingredients is genetics. Twenty years ago, the Price Foundation sponsored a project that collected DNA samples from thousands of people with eating disorders, their families, and control participants. That data, along with information from the 2006 Swedish Twin Study, suggests that anorexia is highly heritable. “Genes play a substantial role in liability to this illness,” says Cindy Bulik, Ph.D., a professor of psychiatry and director of the University of North Carolina’s Eating Disorders Program. And while no one has yet found a specific anorexia gene, researchers are focusing on an area of chromosome 1 that shows important gene linkages.
Certain personality traits associated with anorexia are probably heritable as well. “Anxiety, inhibition, obsessionality, and perfectionism seem to be present in families of people with an eating disorder,” explains Walter Kaye, M.D., who directs the Eating Disorders Treatment and Research Program at the University of California-San Diego. Another ingredient is neurobiology—literally, the way your brain is structured and how it works. Dr. Kaye’s team at UCSD uses fMRI technology to map blood flow in people’s brains as they think of or perform a task. In one study, Kaye and his colleagues looked at the brains of people with anorexia, people recovered from anorexia, and people who’d never had an eating disorder as they played a gambling game. Participants were asked to guess a number and were rewarded for correct guesses with money or “punished” for incorrect or no guesses by losing money.
Participants in the control group responded to wins and losses by “living in the moment,” wrote researchers: “That is, they made a guess and then moved on to the next task.” But people with anorexia, as well as people who’d recovered from anorexia, showed greater blood flow to the dorsal caudate, an area of the brain that helps link actions and their outcomes, as well as differences in their brains’ dopamine pathways. “People with anorexia nervosa do not live in the moment,” concluded Kaye. “They tend to have exaggerated and obsessive worry about the consequences of their behaviors, looking for rules when there are none, and they are overly concerned about making mistakes.” This study was the first to show altered pathways in the brain even in those recovered from anorexia, suggesting that inherent differences in the brain’s architecture and signaling systems help trigger the illness in the first place.
Food Is Medicine
Some of the best news to come out of research on anorexia is a new therapy aimed at kids and teens. Family-based treatment (FBT), also known as the Maudsley approach, was developed at the Maudsley Hospital in London by Ivan Eisler and Christopher Dare, family therapists who watched nurses on the inpatient eating-disorders unit get patients to eat by sitting with them, talking to them, rubbing their backs, and supporting them. Eisler and Dare wondered how that kind of effective encouragement could be used outside the hospital.
Their observations led them to develop family-based treatment, or FBT, a three-phase treatment for teens and young adults that sidesteps the debate on etiology and focuses instead on recovery. “FBT is agnostic on cause,” says Dr. Le Grange. During phase one, families (usually parents) take charge of a child’s eating, with a goal of fully restoring weight (rather than get to the “90 percent of ideal body weight” many programs use as a benchmark). In phase two, families gradually transfer responsibility for eating back to the teen. Phase three addresses other problems or issues related to normal adolescent development, if there are any.
FBT is a pragmatic approach that recognizes that while people with anorexia are in the throes of acute malnourishment, they can’t choose to eat. And that represents one of the biggest shifts in thinking about eating disorders. The DSM-IV, the most recent “bible” of psychiatric treatment, lists as the first symptom of anorexia “a refusal to maintain body weight at or above a minimally normal weight for age and height.” That notion of refusal is key to how anorexia has been seen, and treated, in the past: as a refusal to eat or gain weight. An acting out. A choice. Which makes sense within the psychodynamic model of cause.
But it doesn’t jibe with the research, which suggests that anorexia is more of an inability to eat than a refusal. Forty-five years ago, Aryeh Routtenberg, then (and still) a professor of psychology at Northwestern University, discovered that when he gave rats only brief daily access to food but let them run as much as they wanted on wheels, they would gradually eat less and less, and run more and more. In fact, they would run without eating until they died, a paradigm Routtenberg called activity-based anorexia (ABA). Rats with ABA seemed to be in the grip of a profound physiological imbalance, one that overrode the normal biological imperatives of hunger and self-preservation. ABA in rats suggests that however it starts, once the cycle of restricting and/or compulsive exercising passes a certain threshold, it takes on a life of its own. Self-starvation is no longer (if it ever was) a choice, but a compulsion to the death.
That’s part of the thinking in FBT. Food is the best medicine for people with anorexia, but they can’t choose to eat. They need someone else to make that choice for them. Therapists don’t sit at the table with patients, but parents do. And parents love and know their children. Like the nurses at the Maudsley Hospital, they find ways to get kids to eat. In a sense, what parents do is outshout the anorexia “voice” many sufferers report hearing, a voice in their heads that tells them not to eat and berates them when they do. Parents take the responsibility for making the choice to eat away from the sufferer, who may insist she’s choosing not to eat but who, underneath the illness, is terrified and hungry.
The best aspect of FBT is that it works. Not for everyone, but for the majority of kids and teens. Several randomized controlled studies of FBT and “treatment as usual” (talk therapy without pressure to eat) show recovery rates of 80 to 90 percent with FBT—a huge improvement over previous recovery rates. A study at the University of Chicago is looking at adapting the treatment for young adults; early results are promising.
The most challenging aspect of FBT is that it’s hard to find. Relatively few therapists in the U.S. are trained in the approach. When our daughter got sick, my husband and I couldn’t find a local FBT therapist. So we cobbled together a team that included our pediatrician, a therapist, and lots of friends who supported our family through the grueling work of re-feeding our daughter. Today she’s a healthy college student with friends, a boyfriend, career goals, and a good relationship with us.
A few years ago, Dr. Le Grange and his research partner, Dr. James Lock of Stanford, created a training institute that certifies a handful of FBT therapists each year. (For a list of FBT providers, visit the Maudsley Parents website.) It’s a start. But therapists are notoriously slow to adopt new treatments, and FBT is no exception. Some therapists find FBT controversial because it upends the conventional view of eating disorders and treatments. Some cling to the psychodynamic view of eating disorders despite the lack of evidence. Still, many in the field have at least heard of FBT and Kaye’s neurobiological findings, even if they don’t believe in them yet.
Change comes slowly. But it comes.
* * *
Harriet Brown teaches magazine journalism at the S.I. Newhouse School of Public Communications in Syracuse, New York. Her latest book is Brave Girl Eating: A Family’s Struggle with Anorexia (William Morrow, 2010).

I Am Mental Illness: Anorexia–Biting Back

Battling the uninformed, insurance companies, and your own compulsions

[Ed. note: This post is the first in our series, “I Am Mental Illness,” bringing you personal experiences living with a mental illness. It’s likely that no single one of us lives a life untouched by mental illness, our own or that of someone we know. Yet in spite of their high prevalence, these disorders remain stigmatized and undersupported. To learn more about mental illness, you can start with the National Alliance on Mental Illness website. To learn more about anorexia and other eating disorders, you can start with this guidebook from the National Institute of Mental Health. Double X Science has previously featured a post by Harriet Brown describing the effects of family-based treatment for anorexia. Continue reading

Einstein's most famous equation, sort of. This is the transcription of the chalkboard from a public talk Einstein gave in Pittsburgh in 1934. (Credit: Dwight Vincent and David Topper)

Did Einstein write his most famous equation? Does it matter?

Why all the fuss about E = m c2?

By Matthew R. Francis

Albert Einstein in Pittsburgh, 1934. (Credit: Pittsburgh Sun-Telegraph/Dwight Vincent and David Topper)

The association is strong in our minds: Albert Einstein. Genius. Crazy hair. E = m c2. Maybe many people don’t know what else Einstein did, but they know about the hair and that equation. They may think he flunked math in school (wrong, though he did have conflicts with some teachers), that he was a ladies’ man (true, he had numerous affairs during both of his marriages), and that he was the smartest man who ever lived (debatable, though he certainly is one of the central figures in 20th century physics). Rarely, people will remember that he was a passionate antiracist and advocate for world government as a way of bringing peace.

Obviously whole books have been written about Einstein and E = m c2, but a blog post at io9 caught my attention recently. The post (by George Dvorsky) itself looked back to a scholarly paper by David Topper and Dwight Vincent [1], which reconstructed a public lecture Einstein gave in 1934. (All numbers in square brackets [#] are citations to the references at the end of this post.) This lecture was one of many Einstein presented over the decades, but as Topper and Vincent wrote, “As far as we know [the photograph] is the only extant picture with Einstein and his famous equation.”

Well, kind of. The photograph is really blurry, and the authors had to reconstruct what was written because you can’t actually see any of the equations clearly. Even in the reconstructed version (reproduced below)…there’s no E = m c2. Instead, as I highlighted in the image, the equation is E0 = m. Einstein set the speed of light – usually written as a very large number like 300 million meters per second, or 186,000 miles per second – equal to 1 in his chalkboard talk.

Einstein's most famous equation, sort of. This is the transcription of the chalkboard from a public talk Einstein gave in Pittsburgh in 1934. (Credit: Dwight Vincent and David Topper)

Einstein’s most famous equation, sort of. This is the transcription of the chalkboard from a public talk Einstein gave in Pittsburgh in 1934. (Credit: Dwight Vincent and David Topper)

What’s the meaning of this?

It is customary to express the equivalence of mass and energy (though somewhat inexactly) by the formula E = mc2, in which c represents the velocity of light, about 186,000 miles per second. E is the energy that is contained in a stationary body; m is its mass. The energy that belongs to the mass m is equal to this mass, multiplied by the square of the enormous speed of light – which is to say, a vast amount of energy for every unit of mass. –Albert Einstein [2]

Before I explain why it isn’t a big deal to modify an equation the way Einstein did, it’s good to remember what E = m c2 means. The symbols are simple, but they encode some deep knowledge. E is energy; while colloquially that term gets used for a lot of different things, in physics it’s a measure of the ability of a system to do things. High energy means fast motion, or the ability to make things move fast, or the ability to punch through barriers. Mass m, on the other hand, is a measure of inertia: how hard it is to change an object’s motion. If you kick a rock on the Moon, it will fly farther than it would on Earth, but it’ll hurt your foot just as much – it has the same mass and therefore inertia both places. Finally, c is the speed of light, a fundamental constant of nature. The speed of light is the same for an object of any mass, moving at any velocity.

Mass and energy aren’t independent, even without relativity involved. If you have a heavy car and a light car driving at the same speed, the more massive vehicle carries more energy, in addition to taking more oomph to start or stop it moving. However, E = m c2 means that even if a mass isn’t moving, it has an irreducible amount of energy. Because the speed of light is a big number, and the square of a big number is huge, even a small amount of mass possesses a lot of energy.

The implications of E = m c2 are far-reaching. When a particle of matter and its antimatter partner meet – say, an electron and a positron – they mutually annihilate, turning all of their mass into energy in the form of gamma rays. The process also works in reverse: under certain circumstances, if you have enough excess energy in a collision, you can create new particle-antiparticle pairs. For this reason, physicists often write the mass of a particle in units of energy: the minimum energy required to make it. That’s why we say the Higgs boson mass is 126 GeV – 126 billion electron-volts, where 1 electron-volt is the energy gained by an electron moved by 1 volt of electricity. For comparison, an electron’s mass is about 511 thousand electron-volts, and a proton is 938 million electron-volts.

In our ordinary units the velocity of light is not unity, and a rather artificial distinction between mass and energy is introduced. They are measured by different units, and energy E has a mass E/C2 where C is the velocity of light in the units used. But it seems very probable that mass and energy are two ways of measuring what is essentially the same thing, in the same sense that the parallax and distance of a star are two ways of expressing the same property of location. –Arthur Eddington [3]

Another side of the equation E = m c2 appears when we probe the structure of atomic nuclei. An atomic nucleus is built of protons and neutrons, but the total nuclear mass is different than the sum of the masses of the constituent particles: part of the mass is converted into binding energy to hold everything together. The case is even more dramatic for protons and neutrons themselves, which are made of smaller particles knowns as quarks – but the total mass of the quarks is much smaller than the proton or neutron mass. The extra mass comes from the strong nuclear force gluing the particles together. (In fact, the binding particles are known as gluons for that reason, but that’s a story for another day.)

A brief history of an idea

The E0 = m version of the equation Einstein used in his chalk-talk might seem like it’s a completely different thing. You might be surprised to know that he almost never used the famous form of his own discovery: He preferred either the chalkboard version or the form m = E/c2. In fact, in his first scientific paper on the subject (which was also his second paper on relativity), he wrote [4]:

If a body gives off the energy L in the form of radiation, its mass diminishes by L/c2. The fact that the energy withdrawn from the body becomes energy of radiation evidently makes no difference, so that we are led to the more general conclusion that … the mass of a body is a measure of its energy-content …

In other words, he originally used L for energy instead of E. However, it’s equally obvious that the meaning of E = m c2 is present in the paper. Equations, like sentences in English, can often be written in many different ways and still convey the same meaning. By 1911 (possibly earlier), Einstein was using E for energy [5], but we can use E or L or U for energy, as long as we make it clear that’s what we’re doing.

The same idea goes for setting c equal to one. Many of us are familiar with the concept of space-time: that time is joined with space (thanks to the fact that the speed of light is the same, no matter who measures it). We see the blurring of the boundary between space and time when astronomers speak of light-years: the distance light travels in one year. Because c – and therefore c2 – is a fixed number, it means the difference between mass and energy is more like the difference between pounds and kilograms: one is reachable from the other by a simple calculation. Many physicists, including me, love to use c = 1 because it makes equations much easier to write.

In fact, physicists (including Einstein) rarely use E = m c2 or even m = E/c2 directly. When you study relativity, you find those equations are specific forms of more general expressions and concepts. To wit: The energy of a particle is only proportional to its mass if you take the measurement while moving at the same speed as the particle. Physical quantities in relativity are measured relative to their state of motion – hence the name.

That’s the reason I don’t care that we don’t have a photo of Einstein with his most famous equation, or that he didn’t write it in its familiar form in the chalk-talk. The meaning of the equation doesn’t depend on its form; its usefulness doesn’t derive from Einstein’s way of writing it, or even from Einstein writing it.

A small representative sample of my relativity books, with my cats Pascal and Harriet for scale.

A small representative sample of my relativity books, with my cats Pascal and Harriet for scale.

Even more: Einstein is not the last authority on relativity, but the first. I counted 64 books on my shelves that deal with the theory of relativity somewhere in their pages, and it’s possible I missed a few. The earliest copyright is 1916 [6]; the most recent are 2012, more than 50 years after Einstein’s death. The level runs from popular science books (such as a couple of biographies) up to graduate-level textbooks. Admittedly, the discussion of relativity may not take up much space in many of those books – the astronomy and math books in particular – but the truth is that relativity permeates modern physics. Like vanilla in a cake, it flavors many branches of physics subtly; in its absence, things just aren’t the same.

References

  1. David Topper and Dwight Vincent, Einstein’s 1934 two-blackboard derivation of energy-mass equivalence. American Journal of Physics75 (2007), 978. DOI: 10.1119/1.2772277 . Also available freely in PDF format.
  2. Albert Einstein, E = mc2. Science Illustrated (April 1946). Republished in Ideas and Opinions (Bonanza, 1954).
  3. Arthur Eddington, Space, Time, and Gravitation (Cambridge University Press, 1920).
  4. Albert Einstein, Does the inertia of a body depend upon its energy-content? (translated from Ist die Trägheit eines Körpers von seinem Energiegehalt abhängig?). Annalen der Physic17 (1905). Republished in the collection of papers titled The Principle of Relativity (Dover Books, 1953).
  5. Albert Einstein, On the influence of gravitation on the propagation of light (translated from Über den Einfluss der Schwerkraft auf die Ausbreitung des Lichtes). Annalen der Physic35 (1911). Republished in The Principle of Relativity.
  6. Albert Einstein, Relativity: The Special and the General Theory (1916; English translation published by Crown Books, 1961).

Motherhood Defined: It is in the heart of the beholder

“Motherhood”: Sculpture at the Catacumba Park, Rio de Janeiro, Brazil
Motherhood.  It can mean many things, and our own definition of it is largely defined by our individual experiences.  To one person, motherhood might simply mean the act of raising children; to another, motherhood might be what defines them.  

It is not uncommon to generalize the concept of “motherhood” and lump everyone who upholds a single criterion – being a mom – into one group.   But, really, motherhood affects us all in one way or another, and that way is as unique as the pattern of curves and ridges on a fingertip.

Despite the recent outbreak of (heated) discussion surrounding the Time cover story depicting a beautiful and young woman nursing a toddler, and the questioning if following a certain philosophy makes one more or less of a mother, humans, as a whole, are truly bound by a common goal: to raise the next generation to the best of our abilities under the circumstances at hand.   
But, there is no one answer.
Every mom will have her own definition of motherhood.  But, being a mom is by no means a prerequisite for understanding motherhood as it relates to an individual.  For this special Mother’s Day post, we would like to pay homage to motherhood in its many forms.  Here you will not find a singular description of motherhood.  What you will find, however, is what it means on a more personal level, which is to say that the definition can only come from the heart. 

Thank you to all of the wonderful people who participated in this project (and with short notice!) – we have answers in paragraph, tweet, and prose forms.    

Ilina Ewen, Blogger at Dirt and Noise@IlinaP

What does motherhood mean to me?

Motherhood means feeling a kaleidoscope of emotions simultaneously – fear, glee, worry, angst, pride. And it means being an advocate and a revolutionary who empowers her children to engage in society in a meaningful, fun, vibrant way. And lastly, motherhood means always giving up the biggest piece of cake and the last popsicle and being okay with that.

Momma, PhD, Scientist/Wife/Mother

Motherhood means accepting responsibility. If you read the news or listen to the hype, you know what I mean.  Every choice you make, from before a child is conceived, until long after you’re dead, there is someone out there that will tell you how it impacted your kid. As my nana always said, “It’s always the mother’s fault.”  I just hope that as the time passes I get more credit than blame for how my kids turn out.

Motherhood is how you stretch your heart in ways you never thought possible. It’s how you love through the ups & down, the challenges that life brings. And, it lasts a lifetime from that first tiny cry. 

Chris Gunter, Director of Research Affairs, HudsonAlpha Institute for Biotechnology, @Girlscientist

I’m a human geneticist by training, so I’ve been told having a child is the ultimate version of participating in my research. But the science analogy that best summarizes it for me is maternal-fetal microchimerism. Data demonstrating that my son and I each likely have some of each other’s intact cells inside us forever — as I have with my mother, and she with hers, and so on — beautifully represent to me the meaning of motherhood. As the quote from Elizabeth Stone goes, having a child “is to decide forever to have your heart go walking around outside your body.” To me, that includes half my DNA, some of my cells, and so many of my hopes and dreams, all in one sweet, kissable package.

Dr. Cheryl G. Murphy, Optometrist and Science Writer, @MurphyOD

Motherhood: As a mom of triplets, some would say I have triple the work but I like to think of it as triple the hugs, triple the joy, triple the fun! And when people ask me what it’s like to become a mom I tell them “it’s the toughest job you’ll ever love.” Happy Mother’s Day to all of you amazing, do-it-all moms out there! 

Matt Shipman, Science writer, and founder of the First Step Project@Shiplives

I’m a man, so I obviously have no first-hand experience as a mother. That said, I was raised by a (wonderful) single mother, and have had the pleasure of watching my wife be an awesome mom to our three daughters. Those experiences have shaped my impressions of motherhood. To me, motherhood means being kind, but honest. Being gentle, but strong. Being nurturing, but encouraging independence. Motherhood is letting your kids think you are ten feet tall and bulletproof, so they feel you can keep them safe — even though there’s stuff out there that scares the hell out of you. It’s encouraging your kids to learn new things and to work their butts off in school, without making them feel stupid. Motherhood is leading by example when it comes to telling right from wrong, and showing your kids which battles are worth fighting. And, when the time comes, motherhood is letting go of the reins to see where the kids go on their own. Motherhood is not for wimps.

Julie Marsh, VP of Operations, Cool Mom Picks + Cool Mom Tech@coolmompicks@coolmomtech 

To me, motherhood means leading by example in the most pivotal role I’ve ever accepted.

Emily Willingham, PhD, managing editor, Double X Science, science writer and editor, biologist, autism parent, mother, @ejwillingham

The greatest realization of motherhood for me was that the children we have are people of their own, not “our” children or some kind of nutty, messy, screaming, demanding “other” invading our space, disrupting our lives, and taking our precious time. They are people I love to have around me because they make me laugh, they bring out the teacher in me (not hard to do), they are cool and interesting and imaginative and fun, and each of them (I have three) is a complete individual with a unique personality, outlook, potential, talent, and beautiful, beautiful face that I love to see every day. Just as I choose to spend time with others whom I love, respect, admire, and laugh with, I choose to do the same with my children. That said, I also still have what I had before my children arrived–a happy, full busy life with a partner to whom I seem to grow closer every day, and work that I love. Thanks to my children, I’ve got something even more–three more wonderful people added to my life whom I am deeply delighted and, frankly, honored to know. As Bill Murray’s character in Lost in Translation observes, “They learn how to walk and they learn how to talk… and you want to be with them. And they turn out to be the most delightful people you will ever meet in your life.”

Alice Callahan, Science of Mom@Scienceofmom

What does motherhood mean to me?

Motherhood is humbling. Of all the endeavors I have tackled in my life, never have I wanted so badly to get everything right and yet known that I would not. Never have I been so emotionally invested in the results, so exhausted by the labor of it, and also, so strangely confident that it will turn out OK. It is the most human thing I have ever done.

David Wescott, It’s not a Lecture@dwescott1

For men whose ideas of fatherhood were shaped in large part by its absence in our own lives, motherhood may mean something a bit different.  I’m by no means a scholar, but I’ve had the opportunity to speak often and at length with women across the globe on this topic, and to curate their thoughts a bit. These women talk about the feeling of connection to their children they know no one else has.  They describe the magic of watching their little ones narrate the moments of discovery in their lives. They talk about how their children “complete the circle” and teach them the other side of unconditional love. They help you understand why people invoke the lioness or the grizzly when describing the protective instinct.  

My perspective of motherhood is a lot like that last sentiment – it’s the unyielding power that rises up in you when you realize a little person depends on you for everything.  I know that many men step up when left in that situation – I’ve seen it first-hand – but I suspect the feeling is different for women because this little person actually came from you, is an extension of you, is connected to you in ways no man will ever fully understand. 

When I think of motherhood, I think of unconditional love. It’s what my mother gave to me, and it’s what I expect I would feel for the children I don’t intend to have. My mother made countless sacrifices for me, but she was independent and did not allow motherhood to define her. She has always encouraged me to be my own person and chase my own dreams. She didn’t want me to feel constrained by gender roles. I feel fortunate to live in a time when motherhood is a choice, not an obligation. I admire my peers who have chosen to have kids, but I’m content to enjoy the rich mother-daughter relationship I have with my mom without feeling obliged to replicate it. 

Editors note: Christie has recently written a wonderful piece on motherhood at Last Word On Nothing.  Go read it!

Carin Bondar, Blogger and Filmmaker for Scientific American, the David Suzuki Foundation and Huffington Post, @drbondar

As a working mother of 4 very young children, I don’t have much time to reflect on much – this stage of my life is pretty much dedicated to surviving.  I do know that once I decided that I really wanted to start having children (when I was almost finished my PhD) – my life seemed oddly empty.  It was as though I realized that something tremendous was missing and I became completely obsessed with wanting them.  Now that I have them (yes all 4 of them!) there are many times when I feel completely overwhelmed and exhausted, but  I will always remember the feelings of desire to have a family.  I know that my life would be empty and incomplete without my lovely babies.

Jeanne Garbarino, Biology Editor at Double X Science and Rockefeller University Postdoc, @JeanneGarb

For five years, I have been a mother.  I have learned – and am still learning – some very difficult lessons on time management and prioritization, on choosing my battles wisely, and on being ok when things aren’t exactly perfect (or even decent).  But, to be honest, these are all lessons I really needed to have in my life.  Though it might seem a bit counterintuitive, the mostly delightful chaos associated with rearing my girls has given me more focus.  For me, motherhood is more of a state of being, and it has helped me learn how to not sweat the small stuff (for the most part), to be more mindful of the present, and to think more about the future.  Oh, and motherhood also gives me that special golden ticket to buy really cool games and toys (because who isn’t interested in seeing what Doggie Doo is all about), as well as provides a dependable companion for roller coaster rides.

Motherhood had made me stand in my living room as my kids run around me and think how odd it is that I protect these three little persons. Motherhood has made me weep at the sight of children hurt or hungry; has made me rageful at a world where monsters are free; has made me face my own capacity for anger; and it has graced me with random gifts like hysterical laughter over blueberry waffles at the breakfast table. 

Rebecca Guenard, PhD, Atomic-o-licious@BGuenard

Motherhood

Listening to stories,

admiring all they know.

Hugging, kissing,

holding Cheeto-covered hands.

Tightening hockey skates,

washing baseball uniforms.

He stands on the mound alone.

From Twitter

@Scientistmother: motherhood means joyous bittersweet scary make a better person love no matter what

@Cbardmayes: mh=if my heart was as the universe, still would not be big enough to hold all the love for my son & his smiles #happymunkimama

@Labroides:motherhood is seeing my wife find reserves of strength patience and love that we didn’t know she had

@Babyattachmode:to me motherhood means realizing that I have this enormous amount of love for such a little person!

@Jtothehizzoe:The “motherhood” is that end of town where all the moms hang out, actin’ all hard, right?