Biology Explainer: The big 4 building blocks of life–carbohydrates, fats, proteins, and nucleic acids

The short version
  • The four basic categories of molecules for building life are carbohydrates, lipids, proteins, and nucleic acids.
  • Carbohydrates serve many purposes, from energy to structure to chemical communication, as monomers or polymers.
  • Lipids, which are hydrophobic, also have different purposes, including energy storage, structure, and signaling.
  • Proteins, made of amino acids in up to four structural levels, are involved in just about every process of life.                                                                                                      
  • The nucleic acids DNA and RNA consist of four nucleotide building blocks, and each has different purposes.
The longer version
Life is so diverse and unwieldy, it may surprise you to learn that we can break it down into four basic categories of molecules. Possibly even more implausible is the fact that two of these categories of large molecules themselves break down into a surprisingly small number of building blocks. The proteins that make up all of the living things on this planet and ensure their appropriate structure and smooth function consist of only 20 different kinds of building blocks. Nucleic acids, specifically DNA, are even more basic: only four different kinds of molecules provide the materials to build the countless different genetic codes that translate into all the different walking, swimming, crawling, oozing, and/or photosynthesizing organisms that populate the third rock from the Sun.

                                                  

Big Molecules with Small Building Blocks

The functional groups, assembled into building blocks on backbones of carbon atoms, can be bonded together to yield large molecules that we classify into four basic categories. These molecules, in many different permutations, are the basis for the diversity that we see among living things. They can consist of thousands of atoms, but only a handful of different kinds of atoms form them. It’s like building apartment buildings using a small selection of different materials: bricks, mortar, iron, glass, and wood. Arranged in different ways, these few materials can yield a huge variety of structures.

We encountered functional groups and the SPHONC in Chapter 3. These components form the four categories of molecules of life. These Big Four biological molecules are carbohydrates, lipids, proteins, and nucleic acids. They can have many roles, from giving an organism structure to being involved in one of the millions of processes of living. Let’s meet each category individually and discover the basic roles of each in the structure and function of life.
Carbohydrates

You have met carbohydrates before, whether you know it or not. We refer to them casually as “sugars,” molecules made of carbon, hydrogen, and oxygen. A sugar molecule has a carbon backbone, usually five or six carbons in the ones we’ll discuss here, but it can be as few as three. Sugar molecules can link together in pairs or in chains or branching “trees,” either for structure or energy storage.

When you look on a nutrition label, you’ll see reference to “sugars.” That term includes carbohydrates that provide energy, which we get from breaking the chemical bonds in a sugar called glucose. The “sugars” on a nutrition label also include those that give structure to a plant, which we call fiber. Both are important nutrients for people.

Sugars serve many purposes. They give crunch to the cell walls of a plant or the exoskeleton of a beetle and chemical energy to the marathon runner. When attached to other molecules, like proteins or fats, they aid in communication between cells. But before we get any further into their uses, let’s talk structure.

The sugars we encounter most in basic biology have their five or six carbons linked together in a ring. There’s no need to dive deep into organic chemistry, but there are a couple of essential things to know to interpret the standard representations of these molecules.

Check out the sugars depicted in the figure. The top-left molecule, glucose, has six carbons, which have been numbered. The sugar to its right is the same glucose, with all but one “C” removed. The other five carbons are still there but are inferred using the conventions of organic chemistry: Anywhere there is a corner, there’s a carbon unless otherwise indicated. It might be a good exercise for you to add in a “C” over each corner so that you gain a good understanding of this convention. You should end up adding in five carbon symbols; the sixth is already given because that is conventionally included when it occurs outside of the ring.

On the left is a glucose with all of its carbons indicated. They’re also numbered, which is important to understand now for information that comes later. On the right is the same molecule, glucose, without the carbons indicated (except for the sixth one). Wherever there is a corner, there is a carbon, unless otherwise indicated (as with the oxygen). On the bottom left is ribose, the sugar found in RNA. The sugar on the bottom right is deoxyribose. Note that at carbon 2 (*), the ribose and deoxyribose differ by a single oxygen.

The lower left sugar in the figure is a ribose. In this depiction, the carbons, except the one outside of the ring, have not been drawn in, and they are not numbered. This is the standard way sugars are presented in texts. Can you tell how many carbons there are in this sugar? Count the corners and don’t forget the one that’s already indicated!

If you said “five,” you are right. Ribose is a pentose (pent = five) and happens to be the sugar present in ribonucleic acid, or RNA. Think to yourself what the sugar might be in deoxyribonucleic acid, or DNA. If you thought, deoxyribose, you’d be right.

The fourth sugar given in the figure is a deoxyribose. In organic chemistry, it’s not enough to know that corners indicate carbons. Each carbon also has a specific number, which becomes important in discussions of nucleic acids. Luckily, we get to keep our carbon counting pretty simple in basic biology. To count carbons, you start with the carbon to the right of the non-carbon corner of the molecule. The deoxyribose or ribose always looks to me like a little cupcake with a cherry on top. The “cherry” is an oxygen. To the right of that oxygen, we start counting carbons, so that corner to the right of the “cherry” is the first carbon. Now, keep counting. Here’s a little test: What is hanging down from carbon 2 of the deoxyribose?

If you said a hydrogen (H), you are right! Now, compare the deoxyribose to the ribose. Do you see the difference in what hangs off of the carbon 2 of each sugar? You’ll see that the carbon 2 of ribose has an –OH, rather than an H. The reason the deoxyribose is called that is because the O on the second carbon of the ribose has been removed, leaving a “deoxyed” ribose. This tiny distinction between the sugars used in DNA and RNA is significant enough in biology that we use it to distinguish the two nucleic acids.

In fact, these subtle differences in sugars mean big differences for many biological molecules. Below, you’ll find a couple of ways that apparently small changes in a sugar molecule can mean big changes in what it does. These little changes make the difference between a delicious sugar cookie and the crunchy exoskeleton of a dung beetle.

Sugar and Fuel

A marathon runner keeps fuel on hand in the form of “carbs,” or sugars. These fuels provide the marathoner’s straining body with the energy it needs to keep the muscles pumping. When we take in sugar like this, it often comes in the form of glucose molecules attached together in a polymer called starch. We are especially equipped to start breaking off individual glucose molecules the minute we start chewing on a starch.

Double X Extra: A monomer is a building block (mono = one) and a polymer is a chain of monomers. With a few dozen monomers or building blocks, we get millions of different polymers. That may sound nutty until you think of the infinity of values that can be built using only the numbers 0 through 9 as building blocks or the intricate programming that is done using only a binary code of zeros and ones in different combinations.

Our bodies then can rapidly take the single molecules, or monomers, into cells and crack open the chemical bonds to transform the energy for use. The bonds of a sugar are packed with chemical energy that we capture to build a different kind of energy-containing molecule that our muscles access easily. Most species rely on this process of capturing energy from sugars and transforming it for specific purposes.

Polysaccharides: Fuel and Form

Plants use the Sun’s energy to make their own glucose, and starch is actually a plant’s way of storing up that sugar. Potatoes, for example, are quite good at packing away tons of glucose molecules and are known to dieticians as a “starchy” vegetable. The glucose molecules in starch are packed fairly closely together. A string of sugar molecules bonded together through dehydration synthesis, as they are in starch, is a polymer called a polysaccharide (poly = many; saccharide = sugar). When the monomers of the polysaccharide are released, as when our bodies break them up, the reaction that releases them is called hydrolysis.

Double X Extra: The specific reaction that hooks one monomer to another in a covalent bond is called dehydration synthesis because in making the bond–synthesizing the larger molecule–a molecule of water is removed (dehydration). The reverse is hydrolysis (hydro = water; lysis = breaking), which breaks the covalent bond by the addition of a molecule of water.

Although plants make their own glucose and animals acquire it by eating the plants, animals can also package away the glucose they eat for later use. Animals, including humans, store glucose in a polysaccharide called glycogen, which is more branched than starch. In us, we build this energy reserve primarily in the liver and access it when our glucose levels drop.

Whether starch or glycogen, the glucose molecules that are stored are bonded together so that all of the molecules are oriented the same way. If you view the sixth carbon of the glucose to be a “carbon flag,” you’ll see in the figure that all of the glucose molecules in starch are oriented with their carbon flags on the upper left.

The orientation of monomers of glucose in polysaccharides can make a big difference in the use of the polymer. The glucoses in the molecule on the top are all oriented “up” and form starch. The glucoses in the molecule on the bottom alternate orientation to form cellulose, which is quite different in its function from starch.

Storing up sugars for fuel and using them as fuel isn’t the end of the uses of sugar. In fact, sugars serve as structural molecules in a huge variety of organisms, including fungi, bacteria, plants, and insects.

The primary structural role of a sugar is as a component of the cell wall, giving the organism support against gravity. In plants, the familiar old glucose molecule serves as one building block of the plant cell wall, but with a catch: The molecules are oriented in an alternating up-down fashion. The resulting structural sugar is called cellulose.

That simple difference in orientation means the difference between a polysaccharide as fuel for us and a polysaccharide as structure. Insects take it step further with the polysaccharide that makes up their exoskeleton, or outer shell. Once again, the building block is glucose, arranged as it is in cellulose, in an alternating conformation. But in insects, each glucose has a little extra added on, a chemical group called an N-acetyl group. This addition of a single functional group alters the use of cellulose and turns it into a structural molecule that gives bugs that special crunchy sound when you accidentally…ahem…step on them.

These variations on the simple theme of a basic carbon-ring-as-building-block occur again and again in biological systems. In addition to serving roles in structure and as fuel, sugars also play a role in function. The attachment of subtly different sugar molecules to a protein or a lipid is one way cells communicate chemically with one another in refined, regulated interactions. It’s as though the cells talk with each other using a specialized, sugar-based vocabulary. Typically, cells display these sugary messages to the outside world, making them available to other cells that can recognize the molecular language.

Lipids: The Fatty Trifecta

Starch makes for good, accessible fuel, something that we immediately attack chemically and break up for quick energy. But fats are energy that we are supposed to bank away for a good long time and break out in times of deprivation. Like sugars, fats serve several purposes, including as a dense source of energy and as a universal structural component of cell membranes everywhere.

Fats: the Good, the Bad, the Neutral

Turn again to a nutrition label, and you’ll see a few references to fats, also known as lipids. (Fats are slightly less confusing that sugars in that they have only two names.) The label may break down fats into categories, including trans fats, saturated fats, unsaturated fats, and cholesterol. You may have learned that trans fats are “bad” and that there is good cholesterol and bad cholesterol, but what does it all mean?

Let’s start with what we mean when we say saturated fat. The question is, saturated with what? There is a specific kind of dietary fat call the triglyceride. As its name implies, it has a structural motif in which something is repeated three times. That something is a chain of carbons and hydrogens, hanging off in triplicate from a head made of glycerol, as the figure shows.  Those three carbon-hydrogen chains, or fatty acids, are the “tri” in a triglyceride. Chains like this can be many carbons long.

Double X Extra: We call a fatty acid a fatty acid because it’s got a carboxylic acid attached to a fatty tail. A triglyceride consists of three of these fatty acids attached to a molecule called glycerol. Our dietary fat primarily consists of these triglycerides.

Triglycerides come in several forms. You may recall that carbon can form several different kinds of bonds, including single bonds, as with hydrogen, and double bonds, as with itself. A chain of carbon and hydrogens can have every single available carbon bond taken by a hydrogen in single covalent bond. This scenario of hydrogen saturation yields a saturated fat. The fat is saturated to its fullest with every covalent bond taken by hydrogens single bonded to the carbons.

Saturated fats have predictable characteristics. They lie flat easily and stick to each other, meaning that at room temperature, they form a dense solid. You will realize this if you find a little bit of fat on you to pinch. Does it feel pretty solid? That’s because animal fat is saturated fat. The fat on a steak is also solid at room temperature, and in fact, it takes a pretty high heat to loosen it up enough to become liquid. Animals are not the only organisms that produce saturated fat–avocados and coconuts also are known for their saturated fat content.

The top graphic above depicts a triglyceride with the glycerol, acid, and three hydrocarbon tails. The tails of this saturated fat, with every possible hydrogen space occupied, lie comparatively flat on one another, and this kind of fat is solid at room temperature. The fat on the bottom, however, is unsaturated, with bends or kinks wherever two carbons have double bonded, booting a couple of hydrogens and making this fat unsaturated, or lacking some hydrogens. Because of the space between the bumps, this fat is probably not solid at room temperature, but liquid.

You can probably now guess what an unsaturated fat is–one that has one or more hydrogens missing. Instead of single bonding with hydrogens at every available space, two or more carbons in an unsaturated fat chain will form a double bond with carbon, leaving no space for a hydrogen. Because some carbons in the chain share two pairs of electrons, they physically draw closer to one another than they do in a single bond. This tighter bonding result in a “kink” in the fatty acid chain.

In a fat with these kinks, the three fatty acids don’t lie as densely packed with each other as they do in a saturated fat. The kinks leave spaces between them. Thus, unsaturated fats are less dense than saturated fats and often will be liquid at room temperature. A good example of a liquid unsaturated fat at room temperature is canola oil.

A few decades ago, food scientists discovered that unsaturated fats could be resaturated or hydrogenated to behave more like saturated fats and have a longer shelf life. The process of hydrogenation–adding in hydrogens–yields trans fat. This kind of processed fat is now frowned upon and is being removed from many foods because of its associations with adverse health effects. If you check a food label and it lists among the ingredients “partially hydrogenated” oils, that can mean that the food contains trans fat.

Double X Extra: A triglyceride can have up to three different fatty acids attached to it. Canola oil, for example, consists primarily of oleic acid, linoleic acid, and linolenic acid, all of which are unsaturated fatty acids with 18 carbons in their chains.

Why do we take in fat anyway? Fat is a necessary nutrient for everything from our nervous systems to our circulatory health. It also, under appropriate conditions, is an excellent way to store up densely packaged energy for the times when stores are running low. We really can’t live very well without it.

Phospholipids: An Abundant Fat

You may have heard that oil and water don’t mix, and indeed, it is something you can observe for yourself. Drop a pat of butter–pure saturated fat–into a bowl of water and watch it just sit there. Even if you try mixing it with a spoon, it will just sit there. Now, drop a spoon of salt into the water and stir it a bit. The salt seems to vanish. You’ve just illustrated the difference between a water-fearing (hydrophobic) and a water-loving (hydrophilic) substance.

Generally speaking, compounds that have an unequal sharing of electrons (like ions or anything with a covalent bond between oxygen and hydrogen or nitrogen and hydrogen) will be hydrophilic. The reason is that a charge or an unequal electron sharing gives the molecule polarity that allows it to interact with water through hydrogen bonds. A fat, however, consists largely of hydrogen and carbon in those long chains. Carbon and hydrogen have roughly equivalent electronegativities, and their electron-sharing relationship is relatively nonpolar. Fat, lacking in polarity, doesn’t interact with water. As the butter demonstrated, it just sits there.

There is one exception to that little maxim about fat and water, and that exception is the phospholipid. This lipid has a special structure that makes it just right for the job it does: forming the membranes of cells. A phospholipid consists of a polar phosphate head–P and O don’t share equally–and a couple of nonpolar hydrocarbon tails, as the figure shows. If you look at the figure, you’ll see that one of the two tails has a little kick in it, thanks to a double bond between the two carbons there.

Phospholipids form a double layer and are the major structural components of cell membranes. Their bend, or kick, in one of the hydrocarbon tails helps ensure fluidity of the cell membrane. The molecules are bipolar, with hydrophilic heads for interacting with the internal and external watery environments of the cell and hydrophobic tails that help cell membranes behave as general security guards.

The kick and the bipolar (hydrophobic and hydrophilic) nature of the phospholipid make it the perfect molecule for building a cell membrane. A cell needs a watery outside to survive. It also needs a watery inside to survive. Thus, it must face the inside and outside worlds with something that interacts well with water. But it also must protect itself against unwanted intruders, providing a barrier that keeps unwanted things out and keeps necessary molecules in.

Phospholipids achieve it all. They assemble into a double layer around a cell but orient to allow interaction with the watery external and internal environments. On the layer facing the inside of the cell, the phospholipids orient their polar, hydrophilic heads to the watery inner environment and their tails away from it. On the layer to the outside of the cell, they do the same.
As the figure shows, the result is a double layer of phospholipids with each layer facing a polar, hydrophilic head to the watery environments. The tails of each layer face one another. They form a hydrophobic, fatty moat around a cell that serves as a general gatekeeper, much in the way that your skin does for you. Charged particles cannot simply slip across this fatty moat because they can’t interact with it. And to keep the fat fluid, one tail of each phospholipid has that little kick, giving the cell membrane a fluid, liquidy flow and keeping it from being solid and unforgiving at temperatures in which cells thrive.

Steroids: Here to Pump You Up?

Our final molecule in the lipid fatty trifecta is cholesterol. As you may have heard, there are a few different kinds of cholesterol, some of which we consider to be “good” and some of which is “bad.” The good cholesterol, high-density lipoprotein, or HDL, in part helps us out because it removes the bad cholesterol, low-density lipoprotein or LDL, from our blood. The presence of LDL is associated with inflammation of the lining of the blood vessels, which can lead to a variety of health problems.

But cholesterol has some other reasons for existing. One of its roles is in the maintenance of cell membrane fluidity. Cholesterol is inserted throughout the lipid bilayer and serves as a block to the fatty tails that might otherwise stick together and become a bit too solid.

Cholesterol’s other starring role as a lipid is as the starting molecule for a class of hormones we called steroids or steroid hormones. With a few snips here and additions there, cholesterol can be changed into the steroid hormones progesterone, testosterone, or estrogen. These molecules look quite similar, but they play very different roles in organisms. Testosterone, for example, generally masculinizes vertebrates (animals with backbones), while progesterone and estrogen play a role in regulating the ovulatory cycle.

Double X Extra: A hormone is a blood-borne signaling molecule. It can be lipid based, like testosterone, or short protein, like insulin.

Proteins

As you progress through learning biology, one thing will become more and more clear: Most cells function primarily as protein factories. It may surprise you to learn that proteins, which we often talk about in terms of food intake, are the fundamental molecule of many of life’s processes. Enzymes, for example, form a single broad category of proteins, but there are millions of them, each one governing a small step in the molecular pathways that are required for living.

Levels of Structure

Amino acids are the building blocks of proteins. A few amino acids strung together is called a peptide, while many many peptides linked together form a polypeptide. When many amino acids strung together interact with each other to form a properly folded molecule, we call that molecule a protein.

For a string of amino acids to ultimately fold up into an active protein, they must first be assembled in the correct order. The code for their assembly lies in the DNA, but once that code has been read and the amino acid chain built, we call that simple, unfolded chain the primary structure of the protein.

This chain can consist of hundreds of amino acids that interact all along the sequence. Some amino acids are hydrophobic and some are hydrophilic. In this context, like interacts best with like, so the hydrophobic amino acids will interact with one another, and the hydrophilic amino acids will interact together. As these contacts occur along the string of molecules, different conformations will arise in different parts of the chain. We call these different conformations along the amino acid chain the protein’s secondary structure.

Once those interactions have occurred, the protein can fold into its final, or tertiary structure and be ready to serve as an active participant in cellular processes. To achieve the tertiary structure, the amino acid chain’s secondary interactions must usually be ongoing, and the pH, temperature, and salt balance must be just right to facilitate the folding. This tertiary folding takes place through interactions of the secondary structures along the different parts of the amino acid chain.

The final product is a properly folded protein. If we could see it with the naked eye, it might look a lot like a wadded up string of pearls, but that “wadded up” look is misleading. Protein folding is a carefully regulated process that is determined at its core by the amino acids in the chain: their hydrophobicity and hydrophilicity and how they interact together.

In many instances, however, a complete protein consists of more than one amino acid chain, and the complete protein has two or more interacting strings of amino acids. A good example is hemoglobin in red blood cells. Its job is to grab oxygen and deliver it to the body’s tissues. A complete hemoglobin protein consists of four separate amino acid chains all properly folded into their tertiary structures and interacting as a single unit. In cases like this involving two or more interacting amino acid chains, we say that the final protein has a quaternary structure. Some proteins can consist of as many as a dozen interacting chains, behaving as a single protein unit.

A Plethora of Purposes

What does a protein do? Let us count the ways. Really, that’s almost impossible because proteins do just about everything. Some of them tag things. Some of them destroy things. Some of them protect. Some mark cells as “self.” Some serve as structural materials, while others are highways or motors. They aid in communication, they operate as signaling molecules, they transfer molecules and cut them up, they interact with each other in complex, interrelated pathways to build things up and break things down. They regulate genes and package DNA, and they regulate and package each other.

As described above, proteins are the final folded arrangement of a string of amino acids. One way we obtain these building blocks for the millions of proteins our bodies make is through our diet. You may hear about foods that are high in protein or people eating high-protein diets to build muscle. When we take in those proteins, we can break them apart and use the amino acids that make them up to build proteins of our own.

Nucleic Acids

How does a cell know which proteins to make? It has a code for building them, one that is especially guarded in a cellular vault in our cells called the nucleus. This code is deoxyribonucleic acid, or DNA. The cell makes a copy of this code and send it out to specialized structures that read it and build proteins based on what they read. As with any code, a typo–a mutation–can result in a message that doesn’t make as much sense. When the code gets changed, sometimes, the protein that the cell builds using that code will be changed, too.

Biohazard!The names associated with nucleic acids can be confusing because they all start with nucle-. It may seem obvious or easy now, but a brain freeze on a test could mix you up. You need to fix in your mind that the shorter term (10 letters, four syllables), nucleotide, refers to the smaller molecule, the three-part building block. The longer term (12 characters, including the space, and five syllables), nucleic acid, which is inherent in the names DNA and RNA, designates the big, long molecule.

DNA vs. RNA: A Matter of Structure

DNA and its nucleic acid cousin, ribonucleic acid, or RNA, are both made of the same kinds of building blocks. These building blocks are called nucleotides. Each nucleotide consists of three parts: a sugar (ribose for RNA and deoxyribose for DNA), a phosphate, and a nitrogenous base. In DNA, every nucleotide has identical sugars and phosphates, and in RNA, the sugar and phosphate are also the same for every nucleotide.

So what’s different? The nitrogenous bases. DNA has a set of four to use as its coding alphabet. These are the purines, adenine and guanine, and the pyrimidines, thymine and cytosine. The nucleotides are abbreviated by their initial letters as A, G, T, and C. From variations in the arrangement and number of these four molecules, all of the diversity of life arises. Just four different types of the nucleotide building blocks, and we have you, bacteria, wombats, and blue whales.

RNA is also basic at its core, consisting of only four different nucleotides. In fact, it uses three of the same nitrogenous bases as DNA–A, G, and C–but it substitutes a base called uracil (U) where DNA uses thymine. Uracil is a pyrimidine.

DNA vs. RNA: Function Wars

An interesting thing about the nitrogenous bases of the nucleotides is that they pair with each other, using hydrogen bonds, in a predictable way. An adenine will almost always bond with a thymine in DNA or a uracil in RNA, and cytosine and guanine will almost always bond with each other. This pairing capacity allows the cell to use a sequence of DNA and build either a new DNA sequence, using the old one as a template, or build an RNA sequence to make a copy of the DNA.

These two different uses of A-T/U and C-G base pairing serve two different purposes. DNA is copied into DNA usually when a cell is preparing to divide and needs two complete sets of DNA for the new cells. DNA is copied into RNA when the cell needs to send the code out of the vault so proteins can be built. The DNA stays safely where it belongs.

RNA is really a nucleic acid jack-of-all-trades. It not only serves as the copy of the DNA but also is the main component of the two types of cellular workers that read that copy and build proteins from it. At one point in this process, the three types of RNA come together in protein assembly to make sure the job is done right.


 By Emily Willingham, DXS managing editor 
This material originally appeared in similar form in Emily Willingham’s Complete Idiot’s Guide to College Biology

Double Xpression: Darlene Cavalier of Science Cheerleader and SciStarter

Darlene Cavalier (source)

Darlene Cavalier (Twitter) is the hard-working and seemingly tireless founder of Science Cheerleader and SciStarter. She has held executive positions at Walt Disney Publishing and worked at Discover Magazine for more than 10 years. Darlene incorporated her experience and knowledge in serving as the prinicple investigator of a $1.5 million grant from the National Science Foundation to promote basic research through partnerships with Disney and ABC TV and also has collaborated with the NSF, NBC Sports, and the NFL to produce the Science of NFL Football series. She holds a master’s degree from the University of Pennsylvania where she studied the role of the citizen in science and is herself a former Philadelphia 76ers cheerleader. In addition, she is a writer and senior adviser to Discover Magazine. You can find her full biography here.


On top of all of that, she is also mother to four children. You might be able to blame them for the two-day stomach flu Darlene was just getting over when she talked with Double X Science Managing Editor Emily Willingham about why women pursue professional cheerleading (hint: it’s much more about passion than pay), why cheerleader stereotypes are “bunk,” and why even if Science Cheerleader doesn’t lead all little girls into science, it leaves them with a message about being secure in who they are.

DXS: First, can you give me a quick overview of what your scientific background is and your current connection to science?

A: So I have no formal science degree. My connection to science is that I work and continue to work at Discover magazine. I worked there as business development coordinator, and that’s how I became reintroduced to science. I became a fan of science later in life. After working at Discover for a couple of years and having some children [Cavalier is the mother of four children], I wondered if there was a more significant role for someone like me without a formal science degree. My role at Discover had become curating science on behalf of the magazine. How do we get average public to move in the direction of science literacy?

I went to grad school at the University of Pennsylvania to look at those issues. When I met with an advisor (there), he recommended that I go for a masters in liberal arts, which made sense to me at the time. They created a curriculum for me. Most was in the history and sociology of science and some was in school of education. Piecing all of this together was a turning point for me in my life both prof and personally, I started to learn about these citizen scientists to engage nonscientific members of the public in real scientific research.

I saw huge gaps in getting people to move in that direction. Other countries were enabling citizens to take part in conversations about science policy on national levels. The U.S. didn’t have mechanism for that. That was one gap I saw. Another was people weren’t getting involved in citizen science projects…(they were) hard to find and scattered all over websites. It was a mechanism problem, not philosophical or societal. In grad school, I created a matchmaking site of all citizen science projects I was coming across. I decided to make that database public for people to add their projects, and made it searchable. There were no cheerleaders involved in science cheerleaders when I started the blog…it was about the citizen science projects and reopening this agency for public input. (It was not about) cheerleaders specifically.

                                            

DXS: So how did you end up incorporating the cheerleader aspect?

A: That was basically a fun way of using my background–it is surprising to people that I was a (Philadelphia) 76ers cheerleader. I kept it secret for long time at Discover, fearing I wouldn’t be taken seriously. I wish I hadn’t attempted (to keep it) secret; when it was “exposed” at Discover people were great about it. They thought it was pretty neat. So I became more comfortable in that role. I wanted to do a tongue-in-cheek look at this when I was starting the blog that this site really is for everyone. Citizen science projects are for everyone; it doesn’t matter if even a quote–unquote “ditzy blonde cheerleader” can do it, surely the scientists could figure it out, and the politicians.


(When the concept of Science Cheerleader really took off), we thought, “We’re on to something.” Most people loved it. Criticism came from feminist science bloggers, which I totally understand…I learned something there, too… (this idea of), “these women aren’t scientists, what are they doing?” Then I started getting emails from actual NFL NBA cheerleaders, (telling me) “I’m getting PhD in chemistry,” (and saw it as) a great way to merge two parts of my life. I could hardly believe it. I never even had thought to ask cheerleaders if they were studying any of the STEM fields.

It became cyclical. The founder of the U.S. Science and Engineering Festival called and asked Science Cheerleader to come to that festival and perform. I had to tell him I’d never met them. We got a grant from the Burroughs Wellcome fund to cover travel for 11 science cheerleaders to come to Washington and perform. They had awesome outfits, speaking roles. It was more or less an experiment. Amazing performers against a science theme routine and incredible public spokespeople.  Applying their talents of being enthusiastic about their team to science and tech careers. They were a huge hit at the festival. 

We left each one speak their own language. They’re very diverse. It helped to have that diverse makeup and watching them talk to little kids. Little girls would come up to them, almost like when you see Cinderella, would want their autographs, to touch their uniforms, feel their pompoms. It was a great opportunity to say, “We love cheerleading, but in the daytime I make cars, I’m what you call an engineer.” Some of the dads and the moms were more attracted to the team (the cheerleaders) represented, and they learned that no cheerleader makes a living on 35 bucks a game…they have professions.

We started to realize we were challenging stereotypes of scientists, cheerleaders, engineers. We have so many science cheerleaders in the database, working now with the NFL and NBA, (that) when a local event is happening, I can contact science cheerleaders in the Boston area tell them, and they can go if they want. They don’t have talking points … they say what they want to say. A Patriots cheerleader says cheerleading was great for her professional career, standards were super high for her in college. (You have to maintain) a GPA to be cheerleader and athlete, (and that) was helpful.

DXS: And you’ve encountered some criticism from feminists or women in science. How do you handle that?

A: You can’t be a science cheerleader unless you have science connection. I’m the only fraud in the group. That’s the criterion. What is different, there was so much media play…NPR, CNN, TODAY Show, you can only get across so much in a video. A couple of people took a video where someone says “go science” and assumed we’re just dressing people up as cheerleaders and sending them around to yell that. (But) there’s a lot of depth with what they do.

Many are very accomplished in their fields, going on to do research. One is getting her PhD in chemistry, working on gold nanoparticles to treat pancreatic cancer. That criticism that’s ill informed is the worst type. Putting them in a bad light and they don’t deserve it. They volunteer to do this. They do it because they really believe in it. There are an estimated 3 to 4 million cheerleaders in the US. They want to reach that group, let them know it’s OK to love math and science, (to say) here’s my experience, here’s how I learned what an engineer is, here’s what my day is like. They’re all available to be pen-pal partners. As much as we preach “don’t let other people bother you or criticism bother you,” I don’t like to see ill-informed or misinformed statements.

Q: Have you encountered situations in which your expression of yourself outside the bounds of science has led to people viewing you differently–either more positively or more negatively?

A: Yes. (What) we have is mostly anecdotal…have a number for people coming to site, watching video, we try to save emails and letters that come in from moms of little girls who just want to be cheerleaders but also are talented, and the moms feel they’re talented in math and science and grow concerned about their daughters losing that for their love of cheerleading and dance and are happy to see these role models on the site.

In terms of other positive impacts, if we just look at it from public outreach, it’s been incredible because of the media’s interest. Media interest in this, the teams themselves…it’s not easy to reach Baltimore Ravens fans w positive messages about science and tech or women and science and tech, so when the Ravens repost the interviews and tweet it to their fan base, that’s very positive.

Lines at live events are pretty long with kids lining up to get autographs from the Science Cheerleaders. We always look for local or regional citizen science activity to capitalize on that attention to get those people to do something. For example in South Texas a science and engineering festival. We did our routine, a bunch of people line up for autographs, our choreographer is the reigning Miss United States. That attracts people as I talk about a local researcher who needs their help for citizen science project. (It’s) super simple to use that attention to say “hey, by the way, you’re needed. When you see this crayfish–hold up a picture–it’s considered invasive. Here’s Dr. Zen!” He (Dr. Zen) came out and talked, while they’re waiting inline, a captive audience, and we give the Website where they can get involved.

Our sister site, is now a full-size website called SciStarter, a startup company. That was named one of Philly’s top-10 tech startups last year! It aggregates all of the citizen science projects out there. We rely on that at all of the Science Cheerleader appearances.

I can do what I know how to do, but I would love some grad student or organization that does evaluations or measures outcomes and help me learn more about the metrics, direct outcomes that can be measured, and how do I do that.

DXS: Have you found that your non-science expression of creativity/activity/etc. has in any way informed your understanding of science or how you may talk about it or present it to others?

A: It’s a great question. It’s interesting because that Science Cheerleader blog that I started with and still have–it’s a very diverse audience. There are people who came because they’re reading about their favorite teams’ cheerleaders doing cool things and that ‘s great. I’d have a lot of those types coming to the site, and they’d learn, “hmm that’s interesting I didn’t realize that’s what a chemical engineer does,” then look to their right and see, “hmmm this is happening in Boston”… and take next step from passive reader to getting involved in a citizen science project. The goal is to move them to being actively engaged citizens getting them prepared aware involved in the science policy conversation. I know that sounds so farfetched but not nearly as much as a couple of years ago.

It is not easy to talk to different audiences. I used to preach “know your audience,” but I’ve learned more from my audience than they may have from me. I consider some of the science bloggers, and they’re a part of the audience. I learned they don’t like 76ers involved without science degrees, and we responded to that. What one group likes another won’t. There’s no “one size fits all.” We try to (appeal) to a wide variety of audiences coming to site….from those interested in science policy to people who come because they want more about citizen science efforts. We can point them to these things through SciStarter.

DXS: How comfortable are you expressing your femininity and in what ways? How does this expression influence people’s perception of you in, say, a scientifically oriented context? And does that impression evolve at all?

The initial impression, even through me–and I think the Science Cheerleaders would say this too, even when I was of the Sixers…(pauses)… let’s talk motivation for a minute, why most of these women choose to become professional cheerleaders, why would you do that? The bottom line is that there are very few opportunities to continue dancing and performing once you’re out of college. My personal experience–and you’ll see this in interviews–your options are so limited, and we wanted to continue performing, usually it’s dancing. We see an audition in paper, and they’re looking for people who know how to do triple pirouettes, and the opportunity to continue to perform is there.

I wish we didn’t have to wear those uniforms when I was on the Sixers. I loved every single thing about it except for some of the uniforms. I would love for the NFL and NBA to look and say, “We didn’t realize cheerleaders felt that way and tone it down,” (but) it’s not going to happen. I encourage people to read interviews to see what motivated some of the cheerleaders. I wasn’t a gung-ho Sixers fan who wanted to do this for the team, but some people almost their whole lives dreamed of being a cheerleader for their team.

In terms of embracing being feminine, I don’t know anyone who is that 100% of the time. My hair looked decent, I wore OK clothes, but I don’t walk around like that all the time. I think that the reality of the situation is there’s no one walking around looking like a professional cheerleader all the time. I doubt that the Science Cheerleaders look like that when they go into the lab, not because they want to be taken seriously but for convenience. It s a lot of work to look like that.

I wish that the people who pave the way for these Science Cheerleaders to be exploring the careers they have now–lots are supportive and embrace them but that also happens to be where the toughest critics are embedded. They know better than anyone what it feels like to have somebody work against you. I wish they’d ease up on Science Cheerleaders and let them be all that they can be. They can relate to an audience it’s not easy for us to reach. I can’t reach those little cheerleaders out there myself, but they can, maybe through pom-poms or uniforms or a connection with the moms. It does evolve

Some teams require you to be in school full time or have a full-time job. They want smart cheerleaders because you have to be out doing public speaking so if you’re not articulate or bright…pretty girls and good dancers are a dime a dozen…your success comes down to your interview.

These Science Cheerleaders are by far way more secure in their dual roles than I was. I’m not sure why or how, but when you see them at appearances, they’re looking for ways to embrace these two roles. They’ll say in their interview, I don’t care what people in my lab think about my wearing makeup and so on, and they mean it. These women walk the walk.

DXS: If you had something you could say to the younger you, back when you weren’t so comfortable with yourself about the role of expression and creativity in your chosen career path, what would you say?

A: If I had read one of these interviews when I was, say, in fifth grade, and I read one of those Science Cheerleader interviews, it would resonate w me in a different way. It might not have an impact on me personally when I was a kid…the cheerleaders on our team, we were athletes. Most cheerleaders are leaders in their schools, involved in leadership and academics, student government. The stereotype is total bunk. 

I can tell you that in some point in my life, I can think back to times, like my first big job at Discover, had I read these interviews as a kid, I may have felt more comfortable about being authentic about every aspect of me. 

To use the Pop Warner example, we set a world record with them, 1300 little cheerleaders cheering for science for five minutes. I have a sneaking suspicion that fast forward 10 years from now, they might be interviewed, by you maybe, about how they got interested in science, and they might say, when I as in 8th grade, I got called in to do this science cheer thing, and it opened my eyes to science as a valid career. If it doesn’t happen at a young age for some of these girls, they might reflect back to something they experienced science cheerleading and feel entitled to embrace all that they are and feel good about that.
————————————————————————–
See the Science Cheerleaders in action at the Science and Engineering Festival:

By Emily Willingham, DXS managing editor 

Are children today really suffering nature deficit disorder (TM)?

Children working in a London hosiery mill
around the turn of the century. Did they have
“Nature-Deficit Disorder (TM)”? Source.

Maybe you’ve heard of the scourge plaguing modern-day children, the one known as Nature Deficit Disorder (TM). You won’t find it in any of the standard diagnostic manuals used to identify true disorders, but the “disorder” arises, so the story goes, as a result of keeping children inside for fear of their safety and “stranger danger,” loss of natural surroundings in cities and neighborhoods, and increased attractions indoors that prevent spending time outdoors. 

This “disorder” is supposed to be an effect of modern times, the combined effects of controlling and fearful parents along with the irresistible screen-based attractions indoors. As a result of this “disorder,” children can allegedly be susceptible to any number of ills, including less respect for and understanding of nature, depression, shorter life spans, and obesity.

Concerns like these, it seems, have arisen with the advent of each new technological advance. One wonders if the invention of the wheel raised alarms that children might move through their natural surroundings too quickly to take them in. At any rate, while the person who invented this disorder, Richard Louv, has actually trademarked the term, it doesn’t seem to have made a big splash in the scientific literature. Given that studies are lacking–i.e., completely absent–about “nature deficit disorder,” one thing we can do is take a look back at how children lived before the technological age to see if their indoor-outdoor lives and exposure to the natural world were substantially different.

Go far enough back in human history, and of course, we all spent a lot of time outside. But how did we spend our time with the rise of civilization? Children in agrarian societies then and now worked from dawn to dusk as part of the family to put food on the table. In such a position, they certainly had no lack of exposure to nature, although how much they appreciated that endless grind could be in question. That is, of course, if they didn’t die in infancy or early childhood, as a large percentage of them did in spite of all that fresh air and time outside.

But what happened with children and how they spent their time with the rise of towns and cities? In early times, many of those cities were walled compounds, not necessarily hives of scum and villainy, but generally stacks upon stacks of living quarters existing solely for functionality. Nature? Outside the walls, where danger–including the most extreme kind of “stranger danger”–lurked. Cities that lacked walls, as ancient Rome did for a long period, still were more focused on efficient crowding and function far more than on nature, with only the wealthy having gardens, the modern equivalent of today’s back yards. In general, there were people, there were buildings, and there were more people. Not wildly different from, say, Manhattan today–except for that whole natural jewel known as Central Park.

This piling on of people, brick, mortar, more people, and wood continued for children who didn’t live in agrarian societies. With the Industrial Revolution, what may have really been a nature deficit disorder for a child living, in, say, London, became a genuine threat to health. While they certainly didn’t have television to keep them indoors, they also didn’t have child labor laws. The result was that children who once might have been at work at age 4 in a field were now at work at age 3 or 4 in a factory, putting in 12 or so hours a day before stepping out into the coal-smoked, animal-dung-scented air of the city. 

Child labor wasn’t something confined to Industrial Revolution Britain, and it continues today, both for agriculture and industry. I do wonder if the children harvesting oranges in Brazil feel any closer to nature than the children weaving carpets in Egypt. Likely, there are deficits more profound for them to worry about.

The trigger for this overview of whether or not things have really changed over recorded history in terms of children’s exposure to the natural world is this series of articles in the New York Times (NYT). In case you hit the paywall, it is the NYT’s “Room for Debate” series and includes four articles addressing whether or not nature shows and films connect people to the natural world or “contribute to ‘nature deficit disorder’” by keeping people glued to screens instead of being outside.

Louv, the coiner of “Nature deficit disorder TM”, is one of the four contributors to the debate. He argues that viewing nature documentaries can inspire us to go outside. He also thinks many of us grew up watching “Lassie” instead of the “Gilligan’s Island” my generation watched, but perhaps there’s not a huge difference between Timmy in the well and Gilligan in the lagoon and consequent outdoor inspiration. At any rate, Louv does argue in favor of viewing nature shows, although from a very first-world perspective (like the Romans and gardens, we don’t all have back yards, for example). 

Perhaps the least-defensible perspective is the argument that Ming (Frances) Kuo, an associate professor of natural resources and environmental sciences, has to offer. She compares nature documentaries to “junk food” and offers the obvious: They’re no comparison for the real world. For some reason, she implies that someone has argued that when you have access to TV, you don’t need access to nature, saying, “Scientists have been discovering that even in societies where just about everyone has access to a TV, Internet, or both, having access to nature matters.” I honestly don’t think anyone’s ever argued against that.

Does “nature deficit disorder” exist and is indoor screen time with nature documentaries to blame? In addition to the historical observations I’ve made above suggesting that children from previous eras haven’t necessarily been wandering the glades and meadows like wayward pixies, all I have to offer is a bit of anecdata, and I’m curious about the experiences of others. Historical comparisons suggest that city-dwelling children are no more deficient nature-wise today than city-dwelling children of yesteryear. But do nature documentaries help… or hinder?

When I was young and watching too much “Sesame Street,” “Gilligan’s Island,” and “Star Trek,” the only nature show available to me was “Wild Kingdom” (Mutual of Omaha’s, natch). Other than that, we had nothing unless a periodic NOVA episode came on public television. 

I was interested in science and nature, but acquiring knowledge outside of what I read in a book was difficult. As a resident of the great metropolis of Waco, Tex., yes, I had a natural world to explore, but let’s face it: The primates there weren’t that interesting, and bluebonnets get you only so far. I had no access to real-life live-motion visuals, auditory inputs, or information delivered in any form except what I could read in a book. Talk about sensory limitations.

These days, my children have a nature documentary library that extends to dozens and dozens of choices. And they have watched every single one, some of them repeatedly. That’s not to say that they don’t also have dozens of well-thumbed field guides and encyclopedias covering fossils, dinosaurs, plants, bugs, sharks, rocks–the usual obsessions of the young who are interested in nature. Our “movie nights” often kick off with a nature documentary, and our pick of choice will frequently be one involving narration from David Attenborough. My children want to be David Attenborough–so do I, for that matter–and I can’t recall ever really having that feeling about Marlin Perkins or Jim Fowler

And the upshot of that access to an expanse of nature documentaries I never had is that their knowledge of nature is practically encyclopedic. I’m the biologist in the family–or at least the one who has the biology degree–but my children often know more than I do about a specific plant or animal or ecosystem or area of the world, all thanks to these documentaries they watch. And when we’re outside, they extrapolate what they’ve learned, generalizing it to all kinds of local natural situations.

Do children today just need to be moving around more, somewhere, somehow? Oh, yes. But watching nature shows hasn’t exacerbated some kind of “nature deficit” my children might have, Minecraft obsessed as they are. And these documentaries haven’t replaced “real” nature with televised nature. Instead, the shows have expanded on and given context to the nature my children encounter, wherever that is–city, country, farm, sky, ocean, parking lot, grocery store, or even inside their own home, which is currently the scene of a sci-fi-like moth infestation that has triggered much excitement. I’d hazard that far from causing a deficit, nature shows have given my children a nature literacy that was unknown in previous generations. 



What is your take on nature deficits and nature documentaries?


By Emily Willingham, DXS managing editor 

Double Xpression: Debbie Berebichez, PhD Physicist

Deborah is the first Mexican woman to graduate with a physics PhD from Stanford University. She is a physicist, author, and media personality whose initiatives to popularize science have impacted thousands of people around the world. Her passion is to popularize science and motivate young minds to think analytically about the world. This has led her to pioneer learning initiatives in schools and universities in Mexico, Africa, the US and Israel. She is a frequent public speaker and has been recognized by numerous media outlets such as Oprah, CNN, WSJ, TED, DLD, WIRED, Martha Stewart, City of Ideas, Dr. Oz Show, Celebrity Scientist and others. She regularly appears as a science expert on different international TV networks; currently she is the TV host of National Geographic’s “Humanly Impossible” show. And she will appear on the Discovery Channel’s upcoming show ‘You’ve Been Warned.’  You can find Deborah on Twitter, or on her blog, Science With Debbie.  You can also find Deborah telling her story for The Story Collider.



DXS: First, can you give me a quick overview of what your scientific background is and your current connection to science?

I grew up in Mexico City in a fairly conservative community, and as a child, I was discouraged from doing and studying science.  My parents, family, and peers would all ask, “oh, why don’t you study a more feminine career?” Although I was pretty good in school, I wasn’t exactly a math wizard.  I used to say that I loved philosophy and physics – because philosophy was a deep discipline of asking questions about the world.  And physics studied the world itself.   
It was clear when I was born that my personality was was quite different to the one of my mom.  When I was growing up, my mom was scared because she didn’t know what to do with this little girl that was smart and always asking questions.  She is not a naturally curious person, so she kept trying to tame down my curiosity and kept telling me not to tell boys that I was interested in math and science because I would never find a husband.  According to her, the life goal for a girl was to find a husband, have kids, and that’s it.  Women didn’t have to have a career.  (Not that there is anything wrong with not having a career.)  My high school teachers and counselors were not so different and encouraged me to go into philosophy or literature, not into math or physics.  And my friends in school told me I literally had to be an out of the world genius to be able to study physics.      
Given the circumstances, I started studying philosophy in Mexico.  There were some classes with logic, and some with a little bit more math, and those were the ones I just devoured!  And, at the same time – secretly – I was reading the biographies of scientists.  For some bizarre reason, I was hugely attracted to their life stories.  I didn’t have any family members, or anyone else for that matter, that had pursued a career in science, so I didn’t have a mentor or a role model.  I felt an extreme kinship with Tycho Brahe, who in the late 1500’s was locked in a tower, doing all of these calculations for years, hated by everyone in the town.  Go figure! I felt some kinship with these scientists.   But I didn’t have the courage nor the means to switch majors.  I did confess that I wanted to study another area (physics), but in Mexico one cannot study two majors. So, I studied philosophy for two years.

In the middle of it, I felt way too curious about science and I decided to apply to schools in the US.  It was hard at the time because college in Mexico was a lot cheaper than in the states.  At the private school where I was attending, my tuition was about $5,000 per year.  If I were to come to the US, I would be looking at costs exceeding $35,000 per year. I couldn’t really ask my dad to help me with that price tag so I started to apply everywhere and anywhere that had scholarship opportunities.

I ended up getting a letter from Brandeis 

University saying that they would let me take this advanced placement test and write an essay, which, if I did well, would give me a full scholarship.  I received a full Wien Scholarship and was to continue studying philosophy in the US.  This was probably the nicest thing that has ever happened to me because it opened the path of opportunity.

Brandeis transformed me as a person – I saw females doing science!  But, the bravado moment that changed my life was a very general course called Astronomy 101.  The teaching assistant, Roopesh, was a very sweet man from India and he saw that my eyes would just light up when I was in that class – I was much more curious than the random student that was just taking it to fulfill some requirement.   
At the end of that year, Roopesh and I 

were walking around Harvard Square and stopped to sit under a tree.  I started to tell him, with tears in my eyes, that I just don’t want to die without trying.  What I meant by that is I don’t want to die without trying to do physics.  Everyone’s questioning of my decision made me question my actual ability.  Everyone telling me ‘no’ hampered my development.  I mean, I was good at math, but I definitely didn’t have the same background as all the kids coming in with advanced math and physics courses. 
 

I told Roopesh that I don’t even remember how to solve the equation (a+b)2 – even my algebra was rusty!  But, he believed in me and went back to his professor and told him my story.  This professor decided to meet with me and ends up telling me about someone who had done this sort of thing in the past.  His name was Ed Witten and he went on to become the father of string theory.  

He said “Witten had switched from history to physics, and I will let you try too.”  With that, he handed me a book on vector calculus called ‘Div, Grad and Curl’ and told me that If I could master it in three months by the end of the summer, they would let me switch my major to physics and also let me bypass the first two years of course work.  This would allow me to graduate by the time my scholarship ran out.        
I have never in my life experienced the level of scientific passion condensed into such a short amount of time and I am jealous of the person I was that summer.  I had so much perseverance and focus.  I don’t think I can ever reproduce that intensity again.  From the moment I woke up to the moment I went to sleep, and even in my dreams, I only thought about physics. Roopesh, who became my mentor for the summer, taught me.  

I always wanted to pay Roopesh for his tutoring, but he would never accept any money.  He told me that when he was growing up in the mountains of Darjeeling in India, there was this old man who would climb up to his home and teach him and his sisters English, the musical instrument Tabla, and math.  Roopesh’s father always wanted to pay the old man for his tutoring, but the man always declined.  The man said that the only way he could ever pay him back was if Roopesh did the same thing with someone else in the world.  And by mentoring me, Roopesh fulfilled his payment to the old man.  
Out of that, that became a seed for my physics journey and purpose.  It is now my life’s mission to do the same for other people in the world – especially women – who feel attracted to science but feel trapped.  They for some reason, whether it is social, financial, etc., just can’t find the way toward science.  That is the motivation that dictates my actions.
I was able to pull it off and graduated Brandeis Summa Cum Laude with highest honors in physics and philosophy. I went back to Mexico afterwards to figure out what to do next and to spend some time with my family. At the same time, I did a master’s degree in physics at the largest university in Mexico UNAM.  My curiosity for physics didn’t diminish and in 1998, I randomly applied to two physics PhD programs in the US.  I applied very, very late, but, fortunately, I won a merit-based full scholarship from the Mexican government who provided me with funding, which made it easier for me.    


Because I loved biophysics, I did a search on who was doing this line of research.  I came across Steven Chu, who is currently the secretary of energy.  At the time I was applying, he was at Stanford and was one of the first to manipulate a single strand of DNA with his ‘optical tweezers.’  To me, his story was fascinating!  Without really knowing who he was other than what I found on the web, I wrote him an email asking him if I could work in his lab.  Had I known who he was – that he had just won the Nobel prize in 1997 – I would have been too intimidated.  


I was admitted to Stanford and was invited to work with Dr. Chu, but after two years I decided to switch labs.  As expected, it was a very challenging environment and having only studied two years of physics at Brandeis, I wasn’t as prepared as most of the other students.  I struggled for the first two years.  Everyone worked so extremely hard at Stanford and there I was, struggling to be the best, but, in the beginning, I couldn’t even be average.

Fast forward four years.  I had worked my butt off and ended up becoming the first Mexican woman to graduate with a PhD in physics from Stanford.  It was the best day of my life – I kept thinking that I was so blessed to have my parents live to see this!  It was so moving, I was crying so much and I couldn’t believe what had happened.  My friends had flown in from all over the world to be with me.  It was amazing. 

When people hear what I do, they – especially teenage girls – feel intimidated.  But, when they hear the whole story, their tune changes.  I tell them that I know what it is like to not understand something.  I was not the kind of person where comprehension of my science came naturally.  But I did it.  And if I can do it, anyone can do it!  My story can be inspirational to someone who comes from a background completely lacking in science because they, like me, can reach their goal. 
DXS: What ways do you express yourself creatively that may not have a single thing to do with science?

I was always a very curious girl growing up. I had a lot of interests, one of which being theatre.  I wanted to be an actress when I was young, but my father didn’t let me pursue that as a career, which was probably a good idea.  But, during high school, I went to an after school drama program.  I wrote my own plays – three of them – and performed one of them.  I was in heaven when I was on stage. 

In NY, I have tried to do a little bit of that.  Of course, I’ve never done any big roles, but I will be an extra in a film, or if there is a small production being made in Spanish, I will play a part.  It doesn’t matter how big the role is – I just love doing something creative and getting into a character. 

DXS: What types of productions and/or films have you done?

I don’t think I would come up in the credits as an extra, but I did a movie with Simon Pegg, Kirsten Dunst and Megan Fox in the movie “How to lose Friends and Alienate People.” It was a very, very fun film!  In theatre, Jean Genet, who is a French playwright, has a play called The Maids, and I was the madame.   

DXS: Do you find that your scientific background informs your creativity, even though what you do may not specifically be scientific?

Debbie talking to the TEDYouth audience about waves.

I have a concept that I call “physics glasses.”  And what I mean by that is, for me, physics is not a subject that you just teach in a complex way in a classroom.  Rather, physics is something that is related to everyday life.  From the moment you wake up, you can just put on your physics glasses.  It is a mode of thinking – it is a way where although reality can be very rich and diverse, physics goes very deep and it abstracts commonalities, general principles that apply to many things.  To give you an example, I asked the kids in the audience of my TEDYouth talk, “what do the sun, the ocean, and a symphony orchestra have in common?”  When just looking at them on the surface, there isn’t much in common.  I mean, they are all beautiful things but they are not obviously related.  But, to a physicist, they are all waves.   You have sound waves, light waves, and water waves and you can interchange many of the concepts in physics to explain all three.



Where most of us see the world with our eyes through light waves, other might see the world differently.  Take, for example, my friend Juan, who is blind.  He “sees” the world with sound waves – he senses sound as it bounces off the objects around him.  Through this, he can bike, play basketball, and do a load of activities using sound as a guide.  This is one of my favorite analogies because, really, physics “infects” the way I see the world. 

Deborah the Physicist model

To give you a more specific example in the creativity realm, when I got to NY, I felt really un-feminine.  When I was studying physics, I felt that if I was even slightly feminine, I wouldn’t be respected.  It didn’t help that some of the other women in the physics program at Stanford were more of a “guys girl,” always wearing a baseball cap and t-shirts.  Now, since I am Latin, I first showed up wearing a skirt to class, but I quickly learned to dress down.  Looking feminine would assure that no one would talk to me in class.



So, when I got to NY, I had an explosion.  I wanted to know what it was like to express myself as a woman and my friend suggested that I do some modeling.  So I did.  It was a brief, lasting about a year.  But during that time, my friend, who was a designer from Mexico, asked me to work with her and I wrote and did some videos about the physics of fashion, which also included the physics of high heels video.  


Some people could consider fashion to be superficial, but not me.  I love fashion and color.  But, other scientists generally looked down upon you for liking this sort of thing.   This fueled my desire to prove to everyone that there actually is science everywhere, including fashion, and that they shouldn’t be snobs about it.  There is complex science in how different materials work, how they interact with the environment and you can prove to the women, like my mother and friends back home who think that science has nothing to do with their everyday lives, that it has EVERYTHING to do with it.   So I talked about a Newtonian theory for color – how to pick the right color for you based on how much light the color would reflect on that day, etc.  

DXS: Like a more sophisticated version of colors based on your “season?”

DB: Exactly! 

I also did pieces on the materials, including some of the newest engineering accomplishments with fabric.  For example, I hooked up with a woman and helped her to design a fashionable and very scientific coat.  It ended up costing $11,000, but it was made up of nano fibers and it had a patch in it that could detect the temperature and the probability of rain.  Based on this probability, it could change permeability of the fabric.  It was a very light coat that was comfortable in nice weather, but when it would rain, it would become impermeable to water once it detected a high probability of rain, transforming into a raincoat.

DXS: That’s incredible!  I wish it wasn’t $11,000!

DB:  Yeah, that’s usually the problems with these technologies.  They are often so novel, but one day I’m sure we can figure out how to make things like this scalable.

Science is very much what guides my thinking when I am being creative and I wish I had more time to do creative things while being influenced by a scientific mindset.

DXS: It is so cool that physics has such an incredible overlap with everyday living.  Like, when we take a shower, I want to know “how is the water getting pumped from the ground or through pipes and make its way out of the showerhead?”  But, as a biochemist, I often find it hard to relate everyday things to biochemistry, but I would like to!

DB: Its funny that you say that.  When I try to teach girls that the worst thing they can do is memorize.  Critical thinking is so important and they shouldn’t take anything at face value, and they should even question teachers and authoritative figures in their lives.  Always ask: what goes into making this?  Why is this here?  Why is it this way and not another?  Constantly ask questions.  That s the gift that physics will give you. 

DXS: Have you encountered situations in which your expression of yourself outside the bounds of science has led to people viewing you differently–either more positively or more negatively?

Without saying I am a scientist, I can tell you that people have come up to me and told me that before they even hear me speak, they think I am dumb.  They are usually surprised that I am smart!  I think it is because I am bubbly and friendly and that often makes an impression as being unintelligent.  For them it seems that if a woman is intelligent, she is very cold and distant and serious.  


I’ve met a lot of physicists, and yes, some of them do tend to be that way, often as a reaction to how others treat them.  Or, people would say to me that, because I am Latin, my cultural identity comes across as being warm and the last thing they’d expect me to be into was something as cold as physics.  So yeah, I have definitely been judged so many times!  


It even happens in my current job on Wall Street, especially with my male peers.  When there are off site client meetings, I’m often accompanied by my male sales colleague.  Sales people are generally required to know less about the complexities behind our risk models compared to someone on a more research-oriented role, like me and he will bring me along to these sales meetings in case the potential client has more sophisticated questions that go beyond what he can comfortably answer.  Many times upon meeting the clients for the first time they think that I am the sales person, there to be the smiling face to sell them something, and that he is the risk modeler.  They always direct their mathematical questions to him. 
It came to a point where I became so annoyed that I decided to stop caring.  Now, my sales colleague goes out for drinks with the clients and I know that I am going to be invisible. So I don’t go anymore. I know that I am always going to struggle to get the full intellectual respect in that industry – it will always be a challenge.

DXS: Have you found that your non-science expression of creativity/activity/etc. has in any way informed your understanding of science or how you may talk about it or present it to others?

Yes, absolutely.  For example in Mexico, unlike the US, you absolutely have to do an honors thesis project as an undergrad in science.  Because I had already studied philosophy for four years, I wanted to do a thesis project in philosophy.  But I also wanted to do one in physics.  I recall that back in 1997, when you presented a dissertation in front of the physics community, if you had any power point, forget it.  You would be immediately be called dumb or not a good physicist.  Because, who takes the time to do something fancy!  If you had any color in your presentation, forget it!  


So, literally, the smartest students in physics were people who didn’t really communicate that well, or didn’t really speak English that well, or just didn’t really make an effort.  Their slides were on those overhead projector things with those rolls of plastic sheets, and most of their talks were so confusing and couldn’t be interpreted!  But they were respected!  It was just assumed that if the formula looked complex, they were probably right. 
So what I did was completely different.  I infused my talk with my spiciness and color.  I did an artwork of liquid crystals, which was my research at Brandeis.  Liquid crystals are little cigar-shaped molecules that actually make up the screen of your laptop.  If you pass an electric field through them, they all orient themselves and that is how we can use them for displays in our laptops and TVs. 

I colored these cigar-shaped molecules with purples and reds and greens, and I tried to explain it at the most basic level. This is because of one my philosophy professors in Mexico, who told me that if you cannot explain what you do to your grandmother or 6 year old niece, you don’t understand what you are doing – I loved it!  


And I said to myself that I shouldn’t care what they think.  I pretty much expected to not gain a lot of respect from the physics department, but it had the opposite effect!  I actually had one of the professors from that department come up to me and tell me that he had never really understood what a liquid crystal looked like or what it really was!  He said that “finally I understand [liquid crystals] because of your drawing.  Thank you!”  It was incredible!  


To see the effect on people and from then on, I bounced up in down, I made jokes, I put in creativity.  It doesn’t always have a great effect on very serious audiences, but the younger generation is definitely appreciative.  When it keeps going well, you gain confidence.  And, for me, I even started wearing high heels to the next talk.  When someone commented about my attire, I would counter, hey I have a PhD!

DXS: How comfortable are you expressing your femininity and in what ways? How does this expression influence people’s perception of you in, say, a scientifically oriented context?

This question is deep and a little bit of a struggle at the moment.  This is because I still have that fear – when I arrived in NY, I did that short stint in modeling and I expressed myself and I would dress very creatively – just like my other girlfriends who were not scientists.  But I did feel a little bit of a backlash.  By that I mean that I would post a photo of myself on Facebook or something like that.  They were pretty pictures, not at all seductive or provocative, and my high school mates, usually male, would write me saying: “I always knew you as a serious person and you have achieved so many things – I am just telling you for your own good that this can really damage your image.”  That made me reply with “so you’re telling me that being smart is actually kind of a bummer?”  That actually means that I have to dress very differently from what other women wear for the rest of my life? 

I remember feeling very upset about all of that.  I think that not being taken seriously is still a little bit of a fear of and I think my website has damaged my serious image a little bit.  As a scientist, I was very secluded from the outside world.  I didn’t have a lot of friends when I moved here, but I did know an amazing and powerful woman who happened to be the CEO of Blip TV.  She was insisting that I do videos!  So she invited me to her place and showed me how to do video.  Being the quick woman that she was, she asked me to make up a name for myself on the spot.  When I didn’t answer, she instantly coined “The Science Babe” for me.  I was like, sure, what a cool idea! 

It was kind of a cute name, but because English is not my first language, I don’t always understand some of the cultural connotations associated with some English words.  A few months later, I started to get a few emails from mothers who were upset that I was using my looks.  They would say things like “Are you saying that women have to be in the kitchen or wear short skirts  to be scientists?”  I would answer that no, that was not it at all.  I would further explain that I was trying to change the definition of “babe.”  If you are smart, if you are empowered, you will be a babe no matter how you look.  I am trying to shift what people think of when they think “scientist.”

I don’t feel quite successful with The Science Babe.  It seems like there are quite a few people, especially some from the older generation, who say that they’d love to introduce me to fancy science organizations but are worried that the name “the science babe” will make it difficult.  Also, I had the BBC wanted to talk to me about doing a TV show in NY, and then they said but there’s so much bad stuff out there about you!  And I was like, what do you mean?  They answered “All these things with the “science babe” brand…”

It doesn’t happen all the time, but some people are really critical about the science babe theme, citing that its way too feminine.  Other female scientists that haven’t gone that route have perhaps discounted my seriousness about science.  They assume that what I am doing is not really that important because I do focus on the science everyday life, which is simpler, and it is too much color and too much vivaciousness for our field.  I feel like my femininity has decreased over the last few years because I’ve been too nervous about not being taken seriously.  It s almost like the balance tipped the other way. I feel like perhaps I’ve feminized things to a fault and now I want to appear more serious.  So, I am changing my website to “Science With Debbie” because I really felt the backlash.

It is a struggle to find the balance between being able to express my femininity and presenting myself in a way that people will take me seriously.  In a way, I wish I had a little more courage to not care that much about what people have to say about the science babe but, unfortunately, agents have told me that if I don’t go to the “dumbed down version of femininity” I would get better speaking engagements.  Being feminine has literally affected my career, and it’s because of other people’s perceptions.  I’m never going to be bland, but I will try to change things so I am more serious

DXS: Do you think that the combination of your non-science creativity and scientific-related activity shifts people’s perspectives or ideas about what a scientist or science communicator is? If you’re aware of such an influence, in what way, if any, do you use it to (for example) reach a different corner of your audience or present science in a different sort of way?

The fact that I am approachable and pretty down to earth has allowed me to reach corners of society that more distant and fancy scientists would never even consider. For instance, I am going to a small university to give a talk.  Some of my friends ask why I even bother, especially considering that this insitution is not the most renowned university.  But, I feel the opposite – it is these corners that need the influence the most!  Similarly, when I go to Hispanic high schools, many of the mothers have never seen a scientist.  And there I am, a scientist from Mexico, speaking to them and their kids.  It is that powerful combination of being a smart and warm female that can be shocking, which is cool.

In line with this, there was an experiment where women were asked to draw a female scientist.  Most drew a plain, relatively unattractive woman.  Immediately when you break that mold, it has an incredible effect.  People say, “Hey! She kind of looks like me and she dresses like me.  Maybe I can do science too!”  Some girls are afraid that by being smart, boys won’t talk to them.  My femininity allows me to be a voice in a field that has tended to isolate themselves from the public, which is bad. Some of my colleagues have become a little snobbish.  The fact that I have serious credentials (PhD and 2 postdocs) shows that I had to work like crazy – looks and personality can only go so far.  It s hard work that gets you there! Serious science communication has a lot of math and problem solving in order to explain things accurately to the public. So I still feel like I am doing science!

   

   

No gene is an island: What do scientists mean when they talk about environment and genes?

Nope. This island does not represent your genes. (Source)

When you read news stories about what affects a developing human in the womb or how cancer or obesity arises, you probably also see references to genes and environment. Some articles may focus on genes versus environment, or mention that something is “mostly” genetic or that the “environment” contributes to a disorder or trait in some way.

What some people may not realize is that “environment” to a scientist talking about genetics may be something very different from “environment” to a non-scientist reading a news article. While a scientist may be vividly imagining a bustling microenvironment of native molecules in the way only scientists seem to do, the general reader may simply be thinking about “toxins” or “chemicals.” That’s why Double X Science is here to help with a primer on what those scientist types may mean when they talk about genes and environment. See how useful we are? Tell your friends! (Speaking of environmental influences… ).

Where does environment begin and end? Let’s begin at the end
No gene is an island. Your genes consist in part of a special code that is really an instruction manual. Your cells rely on internal translators to decode these instructions and use them as a guide to make various proteins, the molecules that give your cells, tissues, organs, organ systems, and you much of their structure and function. Proteins do thousands of jobs, from breaking down food to building and replacing tissues (news release) to governing cell division. Most of your cells are engaged in making proteins, a complex, exquisitely regulated and multi-step process. But they don’t do it in a vacuum. 

That code the cell uses to build the protein? That instruction manual is susceptible to all kinds of interference. Pages get torn out or folded over or stuck together. The words of the code can be changed, sometimes subtly, sometimes unmistakably, and all kinds of factors can jumble up those words so that cell ends up making a protein that isn’t quite what was intended. It’s even possible to use the cellular version of Liquid Paper(TM) to mask the code so that the cell doesn’t recognize its existence. Sometimes, these changes have no observable effect. Sometimes, they have big bad effects, such as disease, or helpful outcomes, such as disease resistance.

That code sits in a cell in a body (you) made of trillions of cells doing hundreds of different jobs, taking in things from the environment, playing host to millions of other organisms (themselves an environment), altering and shifting with every passing second as the whole system works to keep you together and functioning within certain acceptable limits for human life. All of these processes can influence the code, leading the cell to use it, change it, use only certain parts of it, Liquid Paper over it, tweak what results from its instructions, or just ignore it. It’s impossible for any code in that situation to function in the total absence of influence from its environment, in part because the code itself is just the beginning. Much of the environment’s influence is reflected in what the cell does with the instructions, not just what the instructions say. 

This multitude of environmental influences is one reason that even people with identical genetic codes can have differences in diseases we think of as being largely genetic. No gene–no code–is an island. You are not your genes. You are your genes and your environment.

No nucleus is an island. Most of our genes are packaged neatly with the rest of our DNA around molecular spools inside a cellular vault called the nucleus. This vault is a choosy sentry, letting in only certain molecules carrying proper ID. Yet inside the nucleus, there is an environment. This environment is not “toxins” or “chemicals,” the things that many people probably think of when someone says “environment” and talks about genes. But it is a busy place with its own milieu. Some parts of the code are in use, some sit quiet, and many molecules bustle and hustle to maintain, copy, process, or protect these important instructions. Every little bit of this hustle and bustle can influence some aspect of what happens to a code in the nucleus, interfering with or enhancing its use or resulting in accidental changes that may have big effects further down the line. The nucleus is the final stop in the chain of environmental influence, wherever that influence may originate.

No cell is an island. Outside of that vault is the big, wide world of the cell. The cell is the molecular version of a busy metropolis (see beautiful video, The Inner Life of the Cell, below), a complex system of cellular highways that the cell uses to deliver packages internally, take in deliveries from the outside world, and transfer the millions of molecules it’s using and making to the right places at the right time. There’s a generator, a recycling center, guards at the gate, and a protein production facility and processing plant, complete with a post office. And that cell sits in an environment, usually, of many many other cells, also busy with their duties. What happens outside of that cell affects the inside of the cell, altering traffic flows, protein production and packaging, signaling and delivery along the routes, and, ultimately, processes inside the vault called the nucleus, the final destination in the chain of environmental effects. From outside the cell, through the cell, and to the nucleus, every step along the way is one that environment can affect, all the way down to what the cell does with its genes–the codes–for the proteins it makes.



No tissue or organ is an island. A lot of cells working together to do the same thing in your body make up a tissue. Tissues combined together to perform a function are an organ. Let’s take the organ named after living, the liver. It keeps you alive by filtering your blood and reconstructing substances that might harm your cells into less-harmful compounds. Just about everything you ingest gets passed through here. When the liver takes up something like ethanol, the alcohol we ingest at wine o’ clock, and gets to work making it less awful for your body, guess what does that work? The cells that make up the liver. The liver’s environment is their environment is each individual cell’s environment, and eventually, the influence will pass to the nucleus, the final destination in the chain of environmental influence, where the code lies.

You are not an island. And whatever you encounter in this world may well influence you right down to the level of your genes. But while many people might think of “toxins” or “chemicals” when they think of environmental influences on genes, your chemical exposures–and chemicals include oxygen, water, body fluids, nutrients and not-so-nutrients in your foods, medications you may take–are among many, many examples of environmental factors that may reach via a chain reaction all the way to your genes. Some of these factors affect your genes by way of your sensory system: A hug, an angry encounter, a sick child, a laugh with a friend–you respond to each of these environmental influences, often by way of hormones that have a chat with your cells. Your cells respond by adjusting how they use the code in the nucleus so that in the face of anger or love or worry, your body still functions within the essential parameters of life. Below, we list with tongue slightly in cheek a sampling of other factors that constitute an “environment” that could influence your genes and how your cell uses them and the proteins they encode. Whether you know it or not, you’re encountering a million factors every day, big and small, that may trigger some effect way down there in the nuclear vaults of your cells, one that reverberates body wide.

Some examples of “environment” that might influence genes
Environmental influence on genes and how your cells use their instructions and the resulting proteins can come from almost anywhere, any factor, from outside of you and within you. It’s not just about exposures to “bad” chemicals or “toxins.” While the list of potential environmental factors influencing genes and how the cell uses them is practically infinite, we give you just a few examples for thought below:

  • Your parents, siblings, friends, extended family, co-workers, soccer team–you know, other people
  • Infections
  • The billions of microbes that live on you and in you
  • Lifestyle factors like diet, exercise, sleep, stress
  • A dusty house
  • A clean house
  • Hormones, from inside and out
  • Age
  • Sex
  • School
  • Pets
  • Hugs
  • Isolation
  • Crowding
  • Talking
  • Supplements
  • The womb and factors therein
  • Playing outside
  • Playing inside
  • Having sex
  • Abstaining from sex
  • Your job
  • Yogurt?
  • Puberty
  • Other genes
  • Learning things
  • Not learning things
  • Minecraft
  • Mozart
  • Birth order
  • Watching sports
  • Playing sports
  • Sitting a lot
  • Standing a lot
  • Twitter
  • The Sun (and just about everything under it)

You get the idea.

By Emily Willingham, DXS managing editor


These views are the opinion of the author and do not necessarily either reflect or disagree with those of the DXS editorial team.

Is the bar high enough for screening breast ultrasounds for breast cancer?

The stormy landscape of the breast, as seen
on ultrasound. At top center (dark circle) is
a small cyst. Source: Wikimedia Commons.
Credit: Nevit Dilmen.
By Laura Newman, contributor

In a unanimous decision, FDA has approved the first breast ultrasound imaging system for dense breast tissue “for use in combination with a standard mammography in women with dense breast tissue who have a negative mammogram and no symptoms of breast cancer.” Patients should not interpret FDA’s approval of the somo-v Automated Breast Ultrasound System as an endorsement of the device as necessarily beneficial for this indication and this will be a thorny concept for many patients to appreciate.

If the approval did not take place in the setting of intense pressure to both inform women that they have dense breasts and lobbying to roll out all sorts of imaging studies quickly, no matter how well they have been studied, it would not be worth posting.

Dense breasts are worrisome to women, especially young women (in their 40s particularly) because they have proved a risk factor for developing breast cancer. Doing ultrasound on every woman with dense breasts, though, who has no symptoms, and a normal mammogram potentially encompasses as many as 40% of women undergoing screening mammography who also have dense breasts, according to the FDA’s press release. Dense breast tissue is most common in young women, specifically women in their forties, and breast density declines with age.

The limitations of mammography in seeing through dense breast tissue have been well known for decades and the search has been on for better imaging studies. Government appointed panels have reviewed the issue and mammography for women in their forties has been controversial. What’s new is the “Are You Dense?” patient movement and legislation to inform women that they have dense breasts.

Merits and pitfalls of device approval
The approval of breast ultrasound hinges on a study of 200 women with dense breast evaluated retrospectively at 13 sites across the United States with mammography and ultrasound. The study showed a statistically significant increase in breast cancer detection when ultrasound was used with mammography.

Approval of a device of this nature (noninvasive, already approved in general, but not for this indication) does not require the company to demonstrate that use of the device reduces morbidity or mortality, or that health benefits outweigh risks.

Eitan Amir, MD, PhD, medical oncologist at Princess Margaret Hospital, Toronto, Canada, said: “It’s really not a policy decision. All this is, is notice that if you want to buy the technology, you can.”

That’s clearly an important point, but not one that patients in the US understand. Patients hear “FDA approval” and assume that means a technology most certainly is for them and a necessary add-on. This disconnect in the FDA medical device approval process and in what patients think it means warrants an overhaul or at the minimum, a clarification for the public.

Materials for FDA submission are available on the FDA website, including the study filed with FDA and a PowerPoint presentation, but lots of luck, finding them quickly. “In the submission by Sunnyvale CA uSystems to FDA, the company stated that screening reduces lymph node positive breast cancer,” noted Amir. “There are few data to support this comment.”

Is cancer detection a sufficient goal?
In the FDA study, more cancers were identified with ultrasound. However, one has to question whether breast cancer detection alone is meaningful in driving use of a technology. In the past year, prostate cancer detection through PSA screening has been attacked because several studies and epidemiologists have found that screening is a poor predictor of who will die from prostate cancer or be bothered by it during their lifetime. We seem to be picking up findings that don’t lead to much to worry about, according to some researchers. Could new imaging studies for breast cancer suffer the same limitation? It is possible.

Another question is whether or not the detected cancers on ultrasound in the FDA study would have been identified shortly thereafter on a routine mammogram. It’s a question that is unclear from the FDA submission, according to Amir.

One of the problems that arises from excess screening is overdiagnosis, overtreatment, and high-cost, unaffordable care. An outcomes analysis of 9,232 women in the US Breast Cancer Surveillance Consortium led by Gretchen L. Gierach, PhD, MPH, at the National Institutes of Health MD, and published online in the August 21 Journal of the National Cancer Institute, revealed: “High mammographic breast density was not associated with risk of death from breast cancer or death from any cause after accounting for other patient and tumor characteristics.” –Gierach et al., 2012

Proposed breast cancer screening tests
Meanwhile, numerous imaging modalities have been proposed as an adjunct to mammography and as potential replacements for mammography. In 2002, proponents of positron emission tomography (PET) asked Medicare to approve pet scans for imaging dense breast tissue, especially in Asian women. The Medicare Coverage Advisory Commission heard testimony, but in the end, Medicare did not approve it for the dense-breast indication.

PET scans are far less popular today, while magnetic resonance imaging (AKA MR, MRI) and imaging have emerged as as adjuncts to mammography for women with certain risk factors. Like ultrasound, the outcomes data is not in the bag for screening with it.

In an interview with Monica Morrow, MD, Chief of Breast Surgery at Memorial Sloan-Kettering Cancer Center, New York, several months ago concerning the rise in legislation to inform women about dense breasts, which frequently leads to additional imaging studies, she said: “There is no good data that women with dense breasts benefit from additional MR screening.” She is not the only investigator to question potentially deleterious use of MR ahead of data collection and analysis. Many breast researchers have expressed fear that women will opt for double mastectomies, based on MR, that in the end, may have been absolutely unnecessary.

“There is one clear indication for MR screening,” stressed Morrow, explaining that women with BRCA mutations should be screened with MRI. “Outside of that group, there was no evidence that screening women with MR was beneficial.”

At just about every breast cancer meeting in the past two years, the benefits and harms of MR and other proposed screening modalities come up, and there is no consensus in the field.  It  should be noted, though, that plenty of breast physicians are skeptical about broad use of MR– not just generalists outside of the field. In other words, it is not breast and radiology specialists versus the US Preventive Services Task Force – a very important message for patients to understand.

One thing is clear: as these new technologies gain FDA approval, it will be a windfall for industry. If industry is successful and doctors are biased to promoting these tests, many may offer them on the estimated 40% of women with dense breasts who undergo routine mammograms, as well as other women evaluated as having a high lifetime risk.  The tests will be offered in a setting of unclear value and uncertain harms. Even though FDA has not approved breast MRI for screening dense breasts, breast MR is being used off label and it is far more costly than mammography.

When patients raise concerns about the unaffordability of medical care, they should be counseled about the uncertain benefit and potential harms of such a test. That may be a tall bill for most Americans to consider: it’s clear that the more is better philosophy is alive and well. Early detection of something, anything, even something dormant, going nowhere, is preferable to skipping a test, and risking who-knows-what, and that is something, most of us cannot imagine at the outset.

[Today's post is from Patient POVthe blog of Laura Newman, a science writer who has worked in health care for most of her adult life, first as a health policy analyst, and as a medical journalist for the last two decades. She was a proud member of the women’s health movement. She has a longstanding interest in what matters to patients and thinks that patients should play a major role in planning and operational discussions about healthcare. Laura’s news stories have appeared in Scientific American blogs, WebMD Medical News, Medscape, Drug Topics, Applied Neurology, Neurology Today, the Journal of the National Cancer Institute, The Lancet, and BMJ, and numerous other outlets. You can find her on Twitter @lauranewmanny.]

Ed note: The original version of this post contains a posted correction that is incorporated into the version you’ve read here.

The opinions in this article do not necessarily conflict with or reflect those of the DXS editorial team.