Don’t worry so much about being the right type of science role model

Role models: How do they look? (Source)
[Today we have a wonderful guest post from Marie-Claire Shanahan, continuing the conversation about what makes someone a good role model in science. This post first appeared at Shanahan's science education blog, Boundary Vision, and she has graciously agreed to let us share it here, too. Shanahan is an Associate Professor of Science Education and Science Communication at the University of Alberta where she researches social aspects of science such as how and why students decide to pursue science degrees. She teaches courses in science teaching methods, scientific language and sociology of science. Marie-Claire is also a former middle and high school science and math teacher and was thrilled last week when one of her past sixth grade students emailed to ask for advice on becoming a science teacher. She blogs regularly about science education at Boundary Vision and about her love of science and music at The Finch & Pea.]

What does it mean to be a good role model? Am I a good role model? Playing around with kids at home or in the middle of a science classroom, adults often ask themselves these questions, especially when it come to girls and science. But despite having asked them many times myself, I don’t think they’re the right questions.


Studying how role models influence students shows a process that is much more complicated than it first seems. In some studies, when female students interact with more female professors and peers in science, their own self-concepts in science can be improved [1]. Others studies show that the number of female science teachers  at their school seems to have no effect [2].


Finding just the right type of role model is even more challenging. Do role models have to be female? Do they have to be of the same race as the students? There is often an assumption that even images and stories can change students’ minds about who can do science. If so, does it help to show very feminine women with interests in science like the science cheerleaders? The answer in most of these studies is, almost predictably, yes and no.


Diana Betz and Denise Sekaquaptewa’s recent study “My Fair Physicist: Feminine Math and Science role models demotivate young girls” seems to muddy the waters even further, suggesting that overly feminine role models might actually have a negative effect on students. [3] The study caught my eye when PhD student Sara Callori wrote about it and shared that it made her worry about her own efforts to be a good role model.


Betz and Sekaquaptewa worked with two groups of middle school girls. With the first group (144 girls, mostly 11 and 12 years old) they first asked the girls for their three favourite school subjects and categorized any who said science or math as STEM-identified (STEM: Science, Technology, Engineering and Math). All of the girls then read articles about three role models. Some were science/math role models and some were general role models (i.e., described as generally successful students). 


The researchers mixed things even further so that some of the role models were purposefully feminine (e.g., shown wearing pink and saying they were interested in fashion magazines) and others were supposedly neutral (e.g., shown wearing dark colours and glasses and enjoying reading).* There were feminine and neutral examples for both STEM and non-STEM role models. After the girls read the three articles, the researchers asked them about their future plans to study math and their current perceptions of their abilities and interest in math.**


For the  most part, the results were as expected. The STEM-identified girls showed more interest in studying math in the future (not really a surprise since they’d already said math and science were their favourite subjects) and the role models didn’t seem to have any effect. Their minds were, for the most part, already made up.


What about the non-STEM identified girls, did the role models help them? It’s hard to tell exactly because the researchers didn’t measure the girls’ desire to study math before reading about the role models.  It seems though that reading about feminine science role models took away from their desire to study math both in the present and the future. Those who were non-STEM identified and read about feminine STEM role models rated their interest significantly lower than other non-STEM identified girls who read about neutral STEM role models and about non-STEM role models. A little bit surprising was the additional finding that the feminine role models also seemed to lower STEM-identified girls current interest in math (though not their future interest).


The authors argue that the issue is unattainability. Other studies have shown that role models can sometimes be intimidating. They can actually turn students off if they seem too successful, such that their career or life paths seem out of reach, or if students can write them off as being much more talented or lucky than themselves. Betz and Sekaquaptewa suggest that the femininity of the role models made them seem doubly successful and therefore even more out of the students’ reach.

The second part of the study was designed to answer this question but is much weaker in design so it’s difficult to say what it adds to the discussion. They used a similar design but with only the STEM role models, feminine and non-feminine (and only 42 students, 20% of whom didn’t receive part of the questionnaire due to an error). The only difference was instead of asking about students interest in studying math they tried to look at the combination of femininity and math success by asking two questions:

  1. “How likely do you think it is that you could be both as successful in math/science AND as feminine or girly as these students by the end of high school?” (p. 5)
  2. “Do being good at math and being girly go together?” (p. 5)

Honestly, it’s at this point that the study loses me. The first question has serious validity issues (and nowhere in the study is the validity of the outcome measures established). First, there are different ways to interpret the question and for students to decide on a rating. A low rating could mean a student doesn’t think they’ll succeed in science even if they really want to. A low rating could also mean that a student has no interest in femininity and rejects the very idea of being successful at both. These are very different things and make the results almost impossible to interpret. 

Second these “successes” are likely different in kind. Succeeding in academics is time dependent and it makes sense to ask young students if they aspire to be successful in science. Feminine identity is less future oriented and more likely to be seen as a trait rather a skill that is developed. It probably doesn’t make sense to ask students if they aspire to be more feminine, especially when femininity has been defined as liking fashion magazines and wearing pink.

Question: Dear student, do you aspire to grow up to wear more pink? 

Answer (regardless of femininity): Um, that’s a weird question.

With these questions, they found that non-STEM identified girls rated themselves as unlikely to match the dual success of the feminine STEM role models. Because of the problems with the items though, it’s difficult to say what that means. The authors do raise an interesting question about unattainability, though, and I hope they’ll continue to look for ways to explore it further.

So, should graduate students like Sara Callori be worried? Like lots of researchers who care deeply about science, Sara expressed a commendable and strong desire to make a contribution to inspiring young women in physics (a field that continues to have a serious gender imbalance). She writes about her desire to encourage young students and be a good role model:

When I made the decision to go into graduate school for physics, however, my outlook changed. I wanted to be someone who bucked the stereotype: a fashionable, fun, young woman who also is a successful physicist. I thought that if I didn’t look like the stereotypical physicist, I could be someone that was a role model to younger students by demonstrating an alternative to the stereotype of who can be a scientist. …This study also unsettled me on a personal level. I’ve long desired to be a role model to younger students. I enjoy sharing the excitement of physics, especially with those who might be turned away from the subject because of stereotypes or negative perceptions. I always thought that by being outgoing, fun, and yes, feminine would enable me to reach students who see physics as the domain of old white men. These results have me questioning myself, which can only hurt my outreach efforts by making me more self conscious about them. They make me wonder if I have to be disingenuous about who I am in order to avoid being seen as “too feminine” for physics.

To everyone who has felt this way, my strong answer is: NO, please don’t let this dissuade you from outreach efforts. Despite results like this, when studies look at the impact of role models in comparison to other influences, relationships always win over symbols. The role models that make a difference are not the people that kids read about in magazines or that visit their classes for a short period of time. The role models, really mentors, that matter are people in students’ lives: teachers, parents, peers, neighbours, camp leaders, and class volunteers. And for the most part it doesn’t depend on their gender or even their educational success. What matters is how they interact with and support the students. 
Good role models are there for students, they believe in their abilities and help them explore their own interests.

My advice? Don’t worry about how feminine or masculine you are or if you have the right characteristics to be a role model, just get out there and get to know the kids you want to encourage. Think about what you can do to build their self-confidence in science or to help them find a topic they are passionate about. When it comes to making the most of the interactions you have with science students, there are a few tips for success (and none of them hinge on wearing or not wearing pink):

§   Be supportive and encouraging of students’ interest in science. Take their ideas and aspirations seriously and let them know that you believe in them. This turns out to be by far one of the most powerful influences in people pursuing science. If you do one thing in your interactions with students, make it this.

§  Share with students why you love doing science. What are the benefits of being a scientist such as contributing to improving people’s lives or in solving difficult problems? Students often desire careers that meet these characteristics of personal satisfaction but don’t always realize that being a scientist can be like that.

§  Don’t hide the fact that there are gender differences in participation in some areas of science (especially physics and engineering). Talk honestly with students about it, being sure to emphasize that differences in ability are NOT the reason for the discrepancies. Talk, for example, about evidence that girls are not given as many opportunities to explore and play with mechanical objects and ask them for their ideas about why some people choose these sciences and others don’t.
There are so many ways to encourage and support students in science, don’t waste time worrying about being the perfect role model. If you’re genuinely interested in taking time to connect with students, you are already the right type.
__________________________________________________________

* There are of course immediate questions about how well supported these are as feminine characteristics but I’m willing to allow the researchers that they could probably only choose a few characteristics and had to try to find things that would seem immediately feminine to 11-12 year olds. I still think it’s a shallow treatment of femininity, one that disregards differences in cultural and class definitions of femininity. (And I may or may not still be trying to sort out my feelings about being their gender neutral stereotype, says she wearing grey with large frame glasses and a stack of books beside her).

**The researchers unfortunately did not distinguish between science and math, using them interchangeably despite large differences in gender representation and connections to femininity between biological sciences, physical sciences, math and various branches of engineering.

[1] Stout, J. G., Dasgupta, N., Hunsinger, M., & McManus, M. A. (2011). STEMing the tide: Using ingroup experts to inoculate women’s self-concept in science, technology, engineering, and mathematics (STEM).Journal of Personality and Social Psychology, 100, 255-270.

[2] Gilmartin, S., Denson, N., Li, E., Bryant, A., & Aschbacher, P. (2007). Gender ratios in high school science departments: The effect of percent female faculty on multiple dimensions of students’ science identities.Journal of Research in Science Teaching, 44, 980–1009.

[3] Betz, D., & Sekaquaptewa, D. (2012). My Fair Physicist? Feminine Math and Science Role Models Demotivate Young Girls Social Psychological and Personality Science DOI: 10.1177/1948550612440735


Further Reading

Buck, G. A., Leslie-Pelecky, D., & Kirby, S. K. (2002). Bringing female scientists into the elementary classroom: Confronting the strength of elementary students’ stereotypical images of scientists. Journal of Elementary Science Education, 14(2), 1-9.

Buck, G. A., Plano Clark, V. L., Leslie-Pelecky, D., Lu, Y., & Cerda-Lizarraga, P. (2008). Examining the cognitive processes used by adolescent girls and women scientists in identifying science role models: A feminist approach. Science Education, 92, 2–20.

Cleaves, A. (2005). The formation of science choices in secondary school.International Journal of Science Education, 27, 471–486.

Ratelle, C.F., Larose, S., Guay, F., & Senecal, C. (2005). Perceptions of parental involvement and support as predictors of college students’ persistence in a science curriculum. Journal of Family Psychology, 19, 286–293.

Simpkins, S. D., Davis-Kean, P. E., & Eccles, J. S. (2006). Math and science motivation: A longitudinal examination of the links between choices and beliefs. Developmental Psychology, 42, 70–83.

Stout, J. G., Dasgupta, N., Hunsinger, M., & McManus, M. (2011). STEMing the tide: Using ingroup experts to inoculate women’s self-concept and professional goals in science, technology, engineering, and mathematics (STEM). Journal of Personality and Social Psychology, 100,255–270.


Giving girls…and science…their due

Respecting both is key to bringing girls into the sciences.

By Susan E. Matthews

When deciding what college to attend, I wouldn’t even consider an all-girls school, despite my mother’s encouragement. I refused to believe that my life had been even a little bit different because I was a girl — though years later as a woman in science, I’ve rethought that assumption.

I knew that my mom had to do gymnastics while the boys in her elementary PE classes had played basketball. I also knew that in her first job, as a computer scientist for a small company, she had been asked to answer the phones when they were between secretaries because she was the only woman in the office. As far as I was concerned, this sort of discrimination was a thing of the past, not something affecting my life. I felt like I was in the clear.

But we are not quite in the clear. We may value girls more, but there are still gaps. One of those gaps exists in the sciences — itself an area that we do not value nearly enough. While I did go to a co-ed school, studied science, and worked in a biogeochemistry lab, I’m in the minority. In 2009–2010, women represented less than a quarter of all students in secondary or post-secondary education studying STEM (science, technology, engineering, and math) topics nationally. This disparity has led to great debate over the reasons for the discrepancy. In early February, in a piece addressing the validity of recent findings, two researchers wrote in the Guardian that to resolve this issue, we could continue to insist that young women make up the difference themselves, by finding their own mentors and paving their own way. But beyond individual industry, we can change our institutions. As Chris Chambers and Kate Clancy argue:

The broader societal constraints that lead so few girls to consider themselves “science people” by middle school derive not from whether we push them into science, but what we value in girls as a culture Continue reading

Fighting the stereotype that math is only for boys

Does she look like an engineer to you?
She should. She is one.

[Ed. note: This post first appeared at our beloved Steminist and is reprinted here with permission.]
by Patricia Valoy
When I take a look around my office I see a lot of men, mostly older White men. There are also women, mostly administrative assistants, accountants, and marketing personnel, but few like me. I am an engineer, and I am young, female, Ivy League educated, and Hispanic. I took the same science and mathematics classes all my male peers took. I was given the same tests, the same homework assignments, and the same projects. Yet, every day I have to battle stereotypes of what some think women should be.
Courtesy of Indiana University.
Engineering, and most science fields, have long been male-dominated professions. Yet, in spite of traditional gender roles pigeonholing women to domestic duties, women haven’t necessarily settled into domesticity without first making many great advances in the science fields. We cannot forget Merit-Ptah, an ancient Egyptian physician, and also the first woman to be known by name in the history of the field of Medicine. Or the ancient Greek philosopher Hypatia, also the first historically noted woman in Mathematics. These women were not given positions in Science to fill a status quo, they earned it, just like women today.
Stereotypes are part of my daily life. In high school I was discouraged by a school teacher to apply to Engineering school, because she claimed it was “harder than I was imagining it to be.” She told me that I wanted to pursue a degree in Engineering because of the money I would earn, but it was clear to her that I did not have a passion for it. Never mind that I outperformed all my classmates, including all my male peers, and that I was about to graduate at the top of my class. As a professional adult, I still face these misconceptions about women in science fields. I get my bosses’ mail delivered to me every day because the delivery man, after four years, still thinks that I am a secretary. I politely remind him every day that I am in fact, also an engineer, like my boss, but it seems to fall on deaf ears. So I find myself not only doing my work, but also delivering mail. A week ago I was asked by a new employee which department I belonged in, and the conversation went like this:
Me: “Hi, are you new to our office?”

New Employee: “Yes, I work in the Marketing department. Do you work with Corporate?”

Me: “No, I work in the Transportation and Infrastructure department.”
New Employee: “Are you an administrative assistant?”
Me: “No, an Engineer.”
New Employee: “Oh, you’re an Accountant.”
Me: “Noooo, an Engineer, a Civil Engineer!”
New Employee: “Oh, wow! I would have never guessed…you don’t look like one.”
Me: “Umm…thanks?”

While I admit to becoming irritated, it was more disconcerting that this co-worker was also a young woman like myself. She reacted in a way that was natural and all too common, because there really aren’t enough women being positively represented in the fields of Science, Technology, Engineering, and Mathematics (STEM). I quite enjoy shaking up perceived ideas of what society assumes I should be, as a woman, a woman of color, and a woman in a male-dominated field, but when will all this shock and awe over women in science fields end? Nonetheless, I love the work I do and the feeling of accomplishment I get when I finish a project. And contrary to 18th century views of the female brain, we have shown that when given the same curriculum as men, we can equally excel.
According to a research study done by the University of Washington, the main culprit for girls not becoming enthusiastic about careers in mathematics and science is gender-stereotyping. The study speaks of the widespread cultural belief in the “girls don’t do math” stereotype. In the study, 247 school-age children (126 girls and 121 boys) were asked to sort four kinds of words: boy names, girl names, math words and reading words, into categories, with the use of an adapted keyboard on a laptop. The lead author of the study, Dario Cvencek, concluded that: “Not only do girls identify the stereotype that math is for boys, but they apply that to themselves. That’s the concerning part. Girls are translating that to mean, ‘Math is not for me.’”
While the study found that both genders equate mathematics with boys, it is unclear why this stereotype is so pronounced at such a young age, though there seems to be a connection with the way in which we speak to young children about mathematics. Dario Cvencek explains: “When a girl does poorly on a math test, often she’s told, ‘That’s fine. You did your best.’ When a boy does poorly, he is more likely to be told, ‘You can do better. Try harder next time.’”
Stereotypes are hurtful, and I believe that stereotype threat, the notion that we experience anxiety in a situation where we have the potential to confirm a negative stereotype, is all too real. We cannot expect young girls to be interested in pursuing careers in science, technology, engineering, and mathematics, if we continue to associate them with one gender. Stereotyping career choices is not in our best interest as we cannot achieve success if we believe that half of our population is not capable of contributing to the betterment of our society. I challenge every educator and parent to reevaluate the way they educate their children. Think about the toys we give them. Building blocks and other shape-sorting toys are equally entertaining for girls as they are for boys, and they help develop cognitive skills, something Barbie and Easy-Bake Ovens will never achieve. Teaching is powerful, and encouraging children to challenge themselves should not depend on the child’s gender.
I am passionate about increasing the number of women represented in STEM fields, not merely because I believe we should be equally represented in all career fields, but because I know we can positively contribute to the advancement of our society. Having both sexes equally represented opens the door for a more diverse range of ideas, which in turn can result in a more robust range of services and products. Additionally, having more women in STEM fields ensures that women’s health and well-being become common practice, and not women’s issues.
Careers in STEM fields require high-level skills and earn higher wages, they are also always in high demand, and experts predicts an even stronger demand for professionals in STEM fields in the future. Our economy is in crisis and 60% of women are the breadwinners or co-breadwinners in their families. If we continue to believe that these high paying careers are only for men, we are not cashing in on the earning power of women. Ultimately, it is not about filling a status quo, it is about using our population, men and women, to the best of their abilities.
Patricia Valoy is a Civil Engineer and an Assistant Project Manager at STV, an architectural, engineering, planning, environmental and construction management firm based in New York City. She is a graduate of the Columbia University School of Engineering in Applied Science, where she majored in Civil Engineering with a concentration in Construction Management. Patricia also is a co-host of a weekly radio show called, “Let Your Voice Be Heard.” The show’s mission is to spread awareness of social and political issues. In addition, she writes a blog about feminist issues and mentors high school and college students interested in pursuing careers in STEM fields. You can follow Patricia on Twitter at @besito86 and read her blog at www.patriciavaloy.blogspot.com.

LEGO those gender stereotypes


My daughter, patiently waiting to get her own balloon jetpack.
Photo credit: Phil Blake
Why can’t you understand that my daughter wants a damn jetpack?

Last weekend, I took my daughters to a birthday party that featured a magician/balloon artist.  He was really fantastic with the kids, and kept their attention for close to 1 hour (ONE HOUR!!!).  At the end of his magic show, he began to furiously twist and tie balloons into these amazing shapes, promoting energetic and imaginative play.  Of these shapes was his own, very intricate invention: a jetpack.  

When he completed the first jetpack, I watched as the eyes of my five-year-old daughter, who happens to be a very sporty kid, light up with wonder.  She looked at me and smiled, indicating through her facial expression alone that she wanted the same balloon toy.  But, alas, when it was her turn for a balloon, her requests were met with opposition.  Here was the conversation:

Magician: How about a great butterfly balloon?

Daughter: No thanks, I’d like a jetpack please.

Magician: I think you should get a butterfly.

Daughter: I’d prefer a jetpack.

Magician: But you’re a girl.  Girls get butterflies.

Daughter (giving me a desperate look): But I really want a jetpack!

Realizing that my daughter was becoming unnecessarily upset, especially given the fact that there were 3 boys already engaging in play with their totally awesome jetpacks, myself and the hostess mother intervened.  We kindly reiterated my daughter’s requests for a jetpack.  And, so she was given a jetpack.

Later that evening, my daughter asked me why the magician insisted that she get a butterfly balloon when she explicitly asked for a jetpack.  Not wanting to reveal the realities of gender stereotype at that very point in time, I simply stated that sometimes we (a gender neutral “we”) might have to repeat ourselves so that others understand what we want.  Then she asked, “but why are butterflies only for girls?”

I was able to more or less able smooth it over with her, but it was clear to me that a very archaic reality was still in play, and my daughters were about to inherit it.  While I have nothing against typically female role-playing or dolls or princesses, I do not like when they are assumed to be the preferred activities.  I also do not like the idea that some toys, based on years of “market research,” are designed to basically pigeonhole girls into a June Cleaveresque state of being, especially without alternative play options.

The five LEGO Friends 
For instance, LEGO has recently launched a “for-girls-only” campaign, exemplified by the new “Friends” LEGO kit.  Slathered in pink and purple, this kit is designed around a narrative involving five friends and a pretend city named Heartlake.  Like nearly all cities, Heartlake boasts a bakery, a beauty salon, a cafe, and a veterinarian’s office to take care of sick animals.  However, unlike every city, Heartlake lacks things like a hospital, a fire department, a police station, and a local airport (thought they do have a flying club).  In essence, this toy is facilitating pretend play that centers ONLY on domestication, which absolutely limits both experiences and expectations for girls playing with this toy.  In essence, LEGO is assuming that all girls want the butterfly balloon instead of the jetpack.

Some might think, “jeeze, it’s just a toy!” and dismiss my objection to all that the Friends kit encompasses.  And perhaps when the Friends kit is offered in addition to a variety of toy types – gender neutral, masculine, and feminine – it may not have a significant effect on the mindset of its young, impressionable owner.  But what if that’s not the case?

Traditional LEGO bricks: For boys AND girls, goshdarnit!
LEGO has also gotten it wrong when it comes to the assumption that girls are not into the traditional LEGO blocks.  In fact, just last night, my daughter (the very one who wanted a jetpack) saw a commercial for a LEGO City product – I forgot which one – and asked that we put it on her ever expanding Christmas list.  Furthermore, both of my daughters are huge fans of the LEGO produced show on the Cartoon Network, Ninjago: Masters of Spinjitzu, which is based on the traditional LEGO figures and game.  My oldest daughter is arguably very sporty and may be more inclined to like “boy” things, but my younger daughter is chock-full of sugar and spice and yada yada yada.  She prefers to wear dresses, LOVES shoes, and demands to have her nails painted at all times.  And she still gets down with regular LEGOs and monster trucks and basketball and karate (all her own choices).  So why is LEGO shoving pastel bricks down girls’ throats?    

Gender and play

Play is an important part of cognitive development.  When children engage in play, they learn through discovery, become familiar with their own limitations, gain a better understanding of spatial relationships, become introduced to cause and effect, and, most relevant to this discussion, play exposes children to societal and cultural norms, as well as family values.  Placing limits on play can affect how a child sees him or herself in the world, which can impact both career and lifestyle choices.   

Research (and experience) has shown that the toys kids choose are shaped by societal expectations; however, these expectations are often dictated by marketing teams and their assumptions of what they think their customers want to see, perpetuating a toy culture that has changed little since the 1950s.  Furthermore, parents may impose toys that are gender “appropriate,” or even punish play that does not align with traditional gender expectations.  But what toys do kids actually want to play with?

In 2003, researchers at the University of Nebraska conducted a study to, in part, identify the impact that stereotyped toys have on play in young children.  There were 30 children who participated in this study, ranging in age from 18-47 months.  They were observed for 30 minutes in a room full of toys, with each toy defined as being traditionally masculine, feminine, or gender neutral.  Interestingly, when assessing the toy preferences of the children, boys tended to play with toys that were either masculine or gender neutral, whereas girls played with toys that were largely gender neutral.  These findings were consistent with previous studies showing that girls tend to play with toys that are not traditionally gendered (i.e. blocks, crayons, puzzles, bears, etc).  
Cherney, et al, 2003
Why is there a disconnect between the natural tendencies of toy choice among female children and what marketing executives deem as appropriate toys for girls?  While fantasy play based on domestic scenarios does have its place during normal development, restricting children to certain types of gendered toys can promote a stereotypical mindset that extends into adulthood, possibly adding to the gender inequity seen in the workplace.  Furthermore, assigning and marketing toys to a specific gender may also contribute to the gendering of household duties and/or recreational activities (i.e. only boys can play hockey or only girls do laundry).

This is obviously problematic for females, especially given the disproportionately low number of women executives and STEM professionals (just to name a few).  However, a conclusion from this study that I hadn’t even considered is the idea that overly feminized toys are not good for boys. 

How “girls only” is disadvantageous to boys

When looking at “masculine” versus “feminine” play, one would see that there is some non-overlap when it comes to learned skills.  For instance, “masculine” play often translates into being able to build something imaginative (like a spaceship or other cool technology) whereas “feminine” toys tend to encourage fantasy play surrounding taking care of the home (like putting the baby to sleep or ironing clothes). 

Both types of learning experiences are useful in today’s world, especially given that more women enter the work force and there is growing trend to more or less split household duties.  So when a kid is being offered toys that encourage play that has both masculine and feminine qualities, there is enhanced development of a variety of skills that ultimately translate into real, modern world scenarios.

However, the issue lies in the willingness to provide and play with strongly cross-gender-stereotyped toys.  Because of the number of toys having this quality, there is a huge gender divide when it comes to play, and boys are much less likely to cross gender lines, especially when toys are overtly “girly” (see figure above).  This is most often because of parents and caregivers who discourage play with “girl” toys, usually citing things like “they will make fun of you.”  Toys heavily marketed to match the stereotypical likes of girls, such as the Friends LEGO kit, clearly excludes boys from engaging in play that develops domestic skills (in addition to pigeonholing girls into thinking that girls can only do domestic things).   

Just yesterday, I came across an article on CNN discussing this issue, and it contained anecdotes similar to the one I described above.  The author described how a little girl was scoffed for having a Star-Wars thermos as well as how a little boy was told (by another little girl) that he could not have the mermaid doll he wanted.  My arguments thus far have been centered on developing a variety of skills through play, but I’d also like to add that limiting self-expression could be disastrous for the future wellbeing of an individual. 

There is some progress being made with regard to how toys are being presented in stores.  For instance, the same article described the new Toy Kingdom at Harrod’s, which does not conform to the traditionally separated “boy” and “girl” sections.  Instead, it has “worlds,” such as The Big Top(with circus acts and fairies) or Odyssey(with space crafts and gadgets).  This type of organization allows any child, regardless of gender, to engage in play that facilitates imagination and cognition.

Hey Toys’R Us, are you listening?                

 Final thoughts

Please don’t misinterpret this as being anti-pink, anti-princess, or anti-feminine.  I embrace my own femininity with vigor and pride.  I like to wear dresses and makeup and get my hair did.  Give me a pair of Manolo Blahniks and I will wear the shit out of them.  But I will do so while elbow deep in a biochemical analysis of intracellular cholesterol transport.    

My point is that if you are going to make a toy more appealing to girls by painting it pink, don’t forget to include facets that allow girls to be comfortable with their femininity while providing an experience that promotes empowerment and an unlimited imagination.  Furthermore, don’t exclude boys from getting an experience that helps them acquire skills that are applicable (and desirable) in the modern world.  As it stands right now, toys like the Friends LEGO kit does neither of these and I believe that they major fails, both of the Double X and the XY variety.    

For more, check out Feminist Frequency’s takedown of LEGO:



References:
Judith E. Owen Blakemore and Renee E. Centers, Characteristics of Boys’ and Girls’ Toys, Sex Roles, Vol. 53, Nos. 9/10, November 2005 [PDF, paywall]

Gerianne M. Alexander, Ph.D., An Evolutionary Perspective of Sex-Typed Toy Preferences: Pink, Blue, and the Brain, Archives of Sexual Behavior, Vol. 32, No. 1, , pp. 7–14, February 2003 [PDF, paywall]

Isabelle D. Cherney, Lisa Kelly-Vance, Katrina Gill Glover, Amy Ruane, and Brigette Oliver Ryalls, The Effects of Stereotyped Toys and Gender on Play Assessment in Children Aged 18-47 Months, Educational Psychology: An International Journal of Experimental Educational Psychology, 23:1, 95-106, 2003

Carol J. Auster and Claire S. Mansbach, The Gender Marketing of Toys: An Analysis of Color and Type of Toy on the Disney Store Website, Sex Roles, 2012 [abstract link]

Isabelle D. Cherney and  Kamala London, Gender-linked Differences in the Toys, Television Shows, Computer Games, and Outdoor Activities of 5- to 13-year-old Children, Sex Roles, 2006 [PDF]

Isabelle D. Cherney and Bridget Oliver Ryalls, Gender-linked differences in the incidental memory of children and adults, J Exp Child Psychol, 1999 Apr;72(4):305-28 [abstract link]

Double Xpression: Debbie Berebichez, PhD Physicist

Deborah is the first Mexican woman to graduate with a physics PhD from Stanford University. She is a physicist, author, and media personality whose initiatives to popularize science have impacted thousands of people around the world. Her passion is to popularize science and motivate young minds to think analytically about the world. This has led her to pioneer learning initiatives in schools and universities in Mexico, Africa, the US and Israel. She is a frequent public speaker and has been recognized by numerous media outlets such as Oprah, CNN, WSJ, TED, DLD, WIRED, Martha Stewart, City of Ideas, Dr. Oz Show, Celebrity Scientist and others. She regularly appears as a science expert on different international TV networks; currently she is the TV host of National Geographic’s “Humanly Impossible” show. And she will appear on the Discovery Channel’s upcoming show ‘You’ve Been Warned.’  You can find Deborah on Twitter, or on her blog, Science With Debbie.  You can also find Deborah telling her story for The Story Collider.



DXS: First, can you give me a quick overview of what your scientific background is and your current connection to science?

I grew up in Mexico City in a fairly conservative community, and as a child, I was discouraged from doing and studying science.  My parents, family, and peers would all ask, “oh, why don’t you study a more feminine career?” Although I was pretty good in school, I wasn’t exactly a math wizard.  I used to say that I loved philosophy and physics – because philosophy was a deep discipline of asking questions about the world.  And physics studied the world itself.   
It was clear when I was born that my personality was was quite different to the one of my mom.  When I was growing up, my mom was scared because she didn’t know what to do with this little girl that was smart and always asking questions.  She is not a naturally curious person, so she kept trying to tame down my curiosity and kept telling me not to tell boys that I was interested in math and science because I would never find a husband.  According to her, the life goal for a girl was to find a husband, have kids, and that’s it.  Women didn’t have to have a career.  (Not that there is anything wrong with not having a career.)  My high school teachers and counselors were not so different and encouraged me to go into philosophy or literature, not into math or physics.  And my friends in school told me I literally had to be an out of the world genius to be able to study physics.      
Given the circumstances, I started studying philosophy in Mexico.  There were some classes with logic, and some with a little bit more math, and those were the ones I just devoured!  And, at the same time – secretly – I was reading the biographies of scientists.  For some bizarre reason, I was hugely attracted to their life stories.  I didn’t have any family members, or anyone else for that matter, that had pursued a career in science, so I didn’t have a mentor or a role model.  I felt an extreme kinship with Tycho Brahe, who in the late 1500’s was locked in a tower, doing all of these calculations for years, hated by everyone in the town.  Go figure! I felt some kinship with these scientists.   But I didn’t have the courage nor the means to switch majors.  I did confess that I wanted to study another area (physics), but in Mexico one cannot study two majors. So, I studied philosophy for two years.

In the middle of it, I felt way too curious about science and I decided to apply to schools in the US.  It was hard at the time because college in Mexico was a lot cheaper than in the states.  At the private school where I was attending, my tuition was about $5,000 per year.  If I were to come to the US, I would be looking at costs exceeding $35,000 per year. I couldn’t really ask my dad to help me with that price tag so I started to apply everywhere and anywhere that had scholarship opportunities.

I ended up getting a letter from Brandeis 

University saying that they would let me take this advanced placement test and write an essay, which, if I did well, would give me a full scholarship.  I received a full Wien Scholarship and was to continue studying philosophy in the US.  This was probably the nicest thing that has ever happened to me because it opened the path of opportunity.

Brandeis transformed me as a person – I saw females doing science!  But, the bravado moment that changed my life was a very general course called Astronomy 101.  The teaching assistant, Roopesh, was a very sweet man from India and he saw that my eyes would just light up when I was in that class – I was much more curious than the random student that was just taking it to fulfill some requirement.   
At the end of that year, Roopesh and I 

were walking around Harvard Square and stopped to sit under a tree.  I started to tell him, with tears in my eyes, that I just don’t want to die without trying.  What I meant by that is I don’t want to die without trying to do physics.  Everyone’s questioning of my decision made me question my actual ability.  Everyone telling me ‘no’ hampered my development.  I mean, I was good at math, but I definitely didn’t have the same background as all the kids coming in with advanced math and physics courses. 
 

I told Roopesh that I don’t even remember how to solve the equation (a+b)2 – even my algebra was rusty!  But, he believed in me and went back to his professor and told him my story.  This professor decided to meet with me and ends up telling me about someone who had done this sort of thing in the past.  His name was Ed Witten and he went on to become the father of string theory.  

He said “Witten had switched from history to physics, and I will let you try too.”  With that, he handed me a book on vector calculus called ‘Div, Grad and Curl’ and told me that If I could master it in three months by the end of the summer, they would let me switch my major to physics and also let me bypass the first two years of course work.  This would allow me to graduate by the time my scholarship ran out.        
I have never in my life experienced the level of scientific passion condensed into such a short amount of time and I am jealous of the person I was that summer.  I had so much perseverance and focus.  I don’t think I can ever reproduce that intensity again.  From the moment I woke up to the moment I went to sleep, and even in my dreams, I only thought about physics. Roopesh, who became my mentor for the summer, taught me.  

I always wanted to pay Roopesh for his tutoring, but he would never accept any money.  He told me that when he was growing up in the mountains of Darjeeling in India, there was this old man who would climb up to his home and teach him and his sisters English, the musical instrument Tabla, and math.  Roopesh’s father always wanted to pay the old man for his tutoring, but the man always declined.  The man said that the only way he could ever pay him back was if Roopesh did the same thing with someone else in the world.  And by mentoring me, Roopesh fulfilled his payment to the old man.  
Out of that, that became a seed for my physics journey and purpose.  It is now my life’s mission to do the same for other people in the world – especially women – who feel attracted to science but feel trapped.  They for some reason, whether it is social, financial, etc., just can’t find the way toward science.  That is the motivation that dictates my actions.
I was able to pull it off and graduated Brandeis Summa Cum Laude with highest honors in physics and philosophy. I went back to Mexico afterwards to figure out what to do next and to spend some time with my family. At the same time, I did a master’s degree in physics at the largest university in Mexico UNAM.  My curiosity for physics didn’t diminish and in 1998, I randomly applied to two physics PhD programs in the US.  I applied very, very late, but, fortunately, I won a merit-based full scholarship from the Mexican government who provided me with funding, which made it easier for me.    


Because I loved biophysics, I did a search on who was doing this line of research.  I came across Steven Chu, who is currently the secretary of energy.  At the time I was applying, he was at Stanford and was one of the first to manipulate a single strand of DNA with his ‘optical tweezers.’  To me, his story was fascinating!  Without really knowing who he was other than what I found on the web, I wrote him an email asking him if I could work in his lab.  Had I known who he was – that he had just won the Nobel prize in 1997 – I would have been too intimidated.  


I was admitted to Stanford and was invited to work with Dr. Chu, but after two years I decided to switch labs.  As expected, it was a very challenging environment and having only studied two years of physics at Brandeis, I wasn’t as prepared as most of the other students.  I struggled for the first two years.  Everyone worked so extremely hard at Stanford and there I was, struggling to be the best, but, in the beginning, I couldn’t even be average.

Fast forward four years.  I had worked my butt off and ended up becoming the first Mexican woman to graduate with a PhD in physics from Stanford.  It was the best day of my life – I kept thinking that I was so blessed to have my parents live to see this!  It was so moving, I was crying so much and I couldn’t believe what had happened.  My friends had flown in from all over the world to be with me.  It was amazing. 

When people hear what I do, they – especially teenage girls – feel intimidated.  But, when they hear the whole story, their tune changes.  I tell them that I know what it is like to not understand something.  I was not the kind of person where comprehension of my science came naturally.  But I did it.  And if I can do it, anyone can do it!  My story can be inspirational to someone who comes from a background completely lacking in science because they, like me, can reach their goal. 
DXS: What ways do you express yourself creatively that may not have a single thing to do with science?

I was always a very curious girl growing up. I had a lot of interests, one of which being theatre.  I wanted to be an actress when I was young, but my father didn’t let me pursue that as a career, which was probably a good idea.  But, during high school, I went to an after school drama program.  I wrote my own plays – three of them – and performed one of them.  I was in heaven when I was on stage. 

In NY, I have tried to do a little bit of that.  Of course, I’ve never done any big roles, but I will be an extra in a film, or if there is a small production being made in Spanish, I will play a part.  It doesn’t matter how big the role is – I just love doing something creative and getting into a character. 

DXS: What types of productions and/or films have you done?

I don’t think I would come up in the credits as an extra, but I did a movie with Simon Pegg, Kirsten Dunst and Megan Fox in the movie “How to lose Friends and Alienate People.” It was a very, very fun film!  In theatre, Jean Genet, who is a French playwright, has a play called The Maids, and I was the madame.   

DXS: Do you find that your scientific background informs your creativity, even though what you do may not specifically be scientific?

Debbie talking to the TEDYouth audience about waves.

I have a concept that I call “physics glasses.”  And what I mean by that is, for me, physics is not a subject that you just teach in a complex way in a classroom.  Rather, physics is something that is related to everyday life.  From the moment you wake up, you can just put on your physics glasses.  It is a mode of thinking – it is a way where although reality can be very rich and diverse, physics goes very deep and it abstracts commonalities, general principles that apply to many things.  To give you an example, I asked the kids in the audience of my TEDYouth talk, “what do the sun, the ocean, and a symphony orchestra have in common?”  When just looking at them on the surface, there isn’t much in common.  I mean, they are all beautiful things but they are not obviously related.  But, to a physicist, they are all waves.   You have sound waves, light waves, and water waves and you can interchange many of the concepts in physics to explain all three.



Where most of us see the world with our eyes through light waves, other might see the world differently.  Take, for example, my friend Juan, who is blind.  He “sees” the world with sound waves – he senses sound as it bounces off the objects around him.  Through this, he can bike, play basketball, and do a load of activities using sound as a guide.  This is one of my favorite analogies because, really, physics “infects” the way I see the world. 

Deborah the Physicist model

To give you a more specific example in the creativity realm, when I got to NY, I felt really un-feminine.  When I was studying physics, I felt that if I was even slightly feminine, I wouldn’t be respected.  It didn’t help that some of the other women in the physics program at Stanford were more of a “guys girl,” always wearing a baseball cap and t-shirts.  Now, since I am Latin, I first showed up wearing a skirt to class, but I quickly learned to dress down.  Looking feminine would assure that no one would talk to me in class.



So, when I got to NY, I had an explosion.  I wanted to know what it was like to express myself as a woman and my friend suggested that I do some modeling.  So I did.  It was a brief, lasting about a year.  But during that time, my friend, who was a designer from Mexico, asked me to work with her and I wrote and did some videos about the physics of fashion, which also included the physics of high heels video.  


Some people could consider fashion to be superficial, but not me.  I love fashion and color.  But, other scientists generally looked down upon you for liking this sort of thing.   This fueled my desire to prove to everyone that there actually is science everywhere, including fashion, and that they shouldn’t be snobs about it.  There is complex science in how different materials work, how they interact with the environment and you can prove to the women, like my mother and friends back home who think that science has nothing to do with their everyday lives, that it has EVERYTHING to do with it.   So I talked about a Newtonian theory for color – how to pick the right color for you based on how much light the color would reflect on that day, etc.  

DXS: Like a more sophisticated version of colors based on your “season?”

DB: Exactly! 

I also did pieces on the materials, including some of the newest engineering accomplishments with fabric.  For example, I hooked up with a woman and helped her to design a fashionable and very scientific coat.  It ended up costing $11,000, but it was made up of nano fibers and it had a patch in it that could detect the temperature and the probability of rain.  Based on this probability, it could change permeability of the fabric.  It was a very light coat that was comfortable in nice weather, but when it would rain, it would become impermeable to water once it detected a high probability of rain, transforming into a raincoat.

DXS: That’s incredible!  I wish it wasn’t $11,000!

DB:  Yeah, that’s usually the problems with these technologies.  They are often so novel, but one day I’m sure we can figure out how to make things like this scalable.

Science is very much what guides my thinking when I am being creative and I wish I had more time to do creative things while being influenced by a scientific mindset.

DXS: It is so cool that physics has such an incredible overlap with everyday living.  Like, when we take a shower, I want to know “how is the water getting pumped from the ground or through pipes and make its way out of the showerhead?”  But, as a biochemist, I often find it hard to relate everyday things to biochemistry, but I would like to!

DB: Its funny that you say that.  When I try to teach girls that the worst thing they can do is memorize.  Critical thinking is so important and they shouldn’t take anything at face value, and they should even question teachers and authoritative figures in their lives.  Always ask: what goes into making this?  Why is this here?  Why is it this way and not another?  Constantly ask questions.  That s the gift that physics will give you. 

DXS: Have you encountered situations in which your expression of yourself outside the bounds of science has led to people viewing you differently–either more positively or more negatively?

Without saying I am a scientist, I can tell you that people have come up to me and told me that before they even hear me speak, they think I am dumb.  They are usually surprised that I am smart!  I think it is because I am bubbly and friendly and that often makes an impression as being unintelligent.  For them it seems that if a woman is intelligent, she is very cold and distant and serious.  


I’ve met a lot of physicists, and yes, some of them do tend to be that way, often as a reaction to how others treat them.  Or, people would say to me that, because I am Latin, my cultural identity comes across as being warm and the last thing they’d expect me to be into was something as cold as physics.  So yeah, I have definitely been judged so many times!  


It even happens in my current job on Wall Street, especially with my male peers.  When there are off site client meetings, I’m often accompanied by my male sales colleague.  Sales people are generally required to know less about the complexities behind our risk models compared to someone on a more research-oriented role, like me and he will bring me along to these sales meetings in case the potential client has more sophisticated questions that go beyond what he can comfortably answer.  Many times upon meeting the clients for the first time they think that I am the sales person, there to be the smiling face to sell them something, and that he is the risk modeler.  They always direct their mathematical questions to him. 
It came to a point where I became so annoyed that I decided to stop caring.  Now, my sales colleague goes out for drinks with the clients and I know that I am going to be invisible. So I don’t go anymore. I know that I am always going to struggle to get the full intellectual respect in that industry – it will always be a challenge.

DXS: Have you found that your non-science expression of creativity/activity/etc. has in any way informed your understanding of science or how you may talk about it or present it to others?

Yes, absolutely.  For example in Mexico, unlike the US, you absolutely have to do an honors thesis project as an undergrad in science.  Because I had already studied philosophy for four years, I wanted to do a thesis project in philosophy.  But I also wanted to do one in physics.  I recall that back in 1997, when you presented a dissertation in front of the physics community, if you had any power point, forget it.  You would be immediately be called dumb or not a good physicist.  Because, who takes the time to do something fancy!  If you had any color in your presentation, forget it!  


So, literally, the smartest students in physics were people who didn’t really communicate that well, or didn’t really speak English that well, or just didn’t really make an effort.  Their slides were on those overhead projector things with those rolls of plastic sheets, and most of their talks were so confusing and couldn’t be interpreted!  But they were respected!  It was just assumed that if the formula looked complex, they were probably right. 
So what I did was completely different.  I infused my talk with my spiciness and color.  I did an artwork of liquid crystals, which was my research at Brandeis.  Liquid crystals are little cigar-shaped molecules that actually make up the screen of your laptop.  If you pass an electric field through them, they all orient themselves and that is how we can use them for displays in our laptops and TVs. 

I colored these cigar-shaped molecules with purples and reds and greens, and I tried to explain it at the most basic level. This is because of one my philosophy professors in Mexico, who told me that if you cannot explain what you do to your grandmother or 6 year old niece, you don’t understand what you are doing – I loved it!  


And I said to myself that I shouldn’t care what they think.  I pretty much expected to not gain a lot of respect from the physics department, but it had the opposite effect!  I actually had one of the professors from that department come up to me and tell me that he had never really understood what a liquid crystal looked like or what it really was!  He said that “finally I understand [liquid crystals] because of your drawing.  Thank you!”  It was incredible!  


To see the effect on people and from then on, I bounced up in down, I made jokes, I put in creativity.  It doesn’t always have a great effect on very serious audiences, but the younger generation is definitely appreciative.  When it keeps going well, you gain confidence.  And, for me, I even started wearing high heels to the next talk.  When someone commented about my attire, I would counter, hey I have a PhD!

DXS: How comfortable are you expressing your femininity and in what ways? How does this expression influence people’s perception of you in, say, a scientifically oriented context?

This question is deep and a little bit of a struggle at the moment.  This is because I still have that fear – when I arrived in NY, I did that short stint in modeling and I expressed myself and I would dress very creatively – just like my other girlfriends who were not scientists.  But I did feel a little bit of a backlash.  By that I mean that I would post a photo of myself on Facebook or something like that.  They were pretty pictures, not at all seductive or provocative, and my high school mates, usually male, would write me saying: “I always knew you as a serious person and you have achieved so many things – I am just telling you for your own good that this can really damage your image.”  That made me reply with “so you’re telling me that being smart is actually kind of a bummer?”  That actually means that I have to dress very differently from what other women wear for the rest of my life? 

I remember feeling very upset about all of that.  I think that not being taken seriously is still a little bit of a fear of and I think my website has damaged my serious image a little bit.  As a scientist, I was very secluded from the outside world.  I didn’t have a lot of friends when I moved here, but I did know an amazing and powerful woman who happened to be the CEO of Blip TV.  She was insisting that I do videos!  So she invited me to her place and showed me how to do video.  Being the quick woman that she was, she asked me to make up a name for myself on the spot.  When I didn’t answer, she instantly coined “The Science Babe” for me.  I was like, sure, what a cool idea! 

It was kind of a cute name, but because English is not my first language, I don’t always understand some of the cultural connotations associated with some English words.  A few months later, I started to get a few emails from mothers who were upset that I was using my looks.  They would say things like “Are you saying that women have to be in the kitchen or wear short skirts  to be scientists?”  I would answer that no, that was not it at all.  I would further explain that I was trying to change the definition of “babe.”  If you are smart, if you are empowered, you will be a babe no matter how you look.  I am trying to shift what people think of when they think “scientist.”

I don’t feel quite successful with The Science Babe.  It seems like there are quite a few people, especially some from the older generation, who say that they’d love to introduce me to fancy science organizations but are worried that the name “the science babe” will make it difficult.  Also, I had the BBC wanted to talk to me about doing a TV show in NY, and then they said but there’s so much bad stuff out there about you!  And I was like, what do you mean?  They answered “All these things with the “science babe” brand…”

It doesn’t happen all the time, but some people are really critical about the science babe theme, citing that its way too feminine.  Other female scientists that haven’t gone that route have perhaps discounted my seriousness about science.  They assume that what I am doing is not really that important because I do focus on the science everyday life, which is simpler, and it is too much color and too much vivaciousness for our field.  I feel like my femininity has decreased over the last few years because I’ve been too nervous about not being taken seriously.  It s almost like the balance tipped the other way. I feel like perhaps I’ve feminized things to a fault and now I want to appear more serious.  So, I am changing my website to “Science With Debbie” because I really felt the backlash.

It is a struggle to find the balance between being able to express my femininity and presenting myself in a way that people will take me seriously.  In a way, I wish I had a little more courage to not care that much about what people have to say about the science babe but, unfortunately, agents have told me that if I don’t go to the “dumbed down version of femininity” I would get better speaking engagements.  Being feminine has literally affected my career, and it’s because of other people’s perceptions.  I’m never going to be bland, but I will try to change things so I am more serious

DXS: Do you think that the combination of your non-science creativity and scientific-related activity shifts people’s perspectives or ideas about what a scientist or science communicator is? If you’re aware of such an influence, in what way, if any, do you use it to (for example) reach a different corner of your audience or present science in a different sort of way?

The fact that I am approachable and pretty down to earth has allowed me to reach corners of society that more distant and fancy scientists would never even consider. For instance, I am going to a small university to give a talk.  Some of my friends ask why I even bother, especially considering that this insitution is not the most renowned university.  But, I feel the opposite – it is these corners that need the influence the most!  Similarly, when I go to Hispanic high schools, many of the mothers have never seen a scientist.  And there I am, a scientist from Mexico, speaking to them and their kids.  It is that powerful combination of being a smart and warm female that can be shocking, which is cool.

In line with this, there was an experiment where women were asked to draw a female scientist.  Most drew a plain, relatively unattractive woman.  Immediately when you break that mold, it has an incredible effect.  People say, “Hey! She kind of looks like me and she dresses like me.  Maybe I can do science too!”  Some girls are afraid that by being smart, boys won’t talk to them.  My femininity allows me to be a voice in a field that has tended to isolate themselves from the public, which is bad. Some of my colleagues have become a little snobbish.  The fact that I have serious credentials (PhD and 2 postdocs) shows that I had to work like crazy – looks and personality can only go so far.  It s hard work that gets you there! Serious science communication has a lot of math and problem solving in order to explain things accurately to the public. So I still feel like I am doing science!

   

   

Survival is Gendered, According to Scholastic

[Editor's note: We were going to write this as a she said/he said sort of thing with Emily Willingham and Matthew Francis, but then Francis got all serious and did an analysis and stuff. So his smart analysis appears first, and Willingham's (not quite) equally sober chapter-by-chapter evaluation of the "girls" book follows.]

Last week Ryan North, purveyor of the excellent webcomic Dinosaur Comics, stumbled across a pair of books published by Scholastic. The books are titled For Boys Only: How to Survive Anything and For Girls Only: How to Survive Anything, which already should be a tip-off, but the tables of contents really hammer home a message. As North says, “Maybe – MAYBE – How To Pick Perfect Sunglasses is actually in the same class as Surviving When Your Parachute Fails.” However, it’s obvious that boys and girls are not expected to want to survive the same things, and that the very idea of survival is gendered in these books.

Thanks to the outcry, Scholastic has already announced they will discontinue the titles, which is great. However, I wonder why they approved them in the first place, and their announcement shows that they don’t really understand what the big deal is. My friend JeNel, who is a children’s librarian, points out that Scholastic’s displays are always gendered, with a lovely regressive social agenda. So, shall we break it down for Scholastic?

First, anytime you name two books “For Boys Only” and “For Girls Only”, put an alligator on the cover of one and a pink cell phone on the cover of the other, you’re telling your audience of impressionable children that these books aren’t going to be equivalent. It’s almost inevitable that the “boy” book is going to be full of adventure and the “girl” book is going to be full of social stuff, and that’s the case here. “Survival” for boys includes broken legs, tornadoes, and earthquakes (since boys are obviously the only ones who will ever experience those), while “survival” for girls includes frenemies, brothers, and teaching your cat how to sit. (I suppose treating cat scratches and bites is kind of a survival skill.) In other words, “survival” for girls is a set of potentially useful social skills – which I guess boys don’t need to know. I split the contents into five categories, and assigned each chapter to one of the categories. 

Here’s the breakdown:

  1. True survival skills, where the knowledge could save your life or at least help you cope with injuries (forest fires, flash floods, snakebites, etc.). Not all of these are likely to be experienced (such as polar bear attack), but at least they could happen. The score: “boys” 22, “girls” 0.
  2. Survival skills for science fiction or fantasy scenarios, which are fun, but will never happen in real life (ghost attack, vampire attack, dinosaur attack, etc.). The score: “boys”  4, “girls” 3.
  3. Useful skills and advice for daily life or unusual situations (dealing with annoying people, getting over rejection, etc.). Not all of these are of equal um…significance, unless you think picking the right sunglasses is equivalent to coping with bullies, but I didn’t want to break the categories up too much. The score: “boys” 0, “girls” 23.
  4. Skills and advice for sudden stardom or suddenly becoming rich, which are fun to dream about, I suppose. The score: “boys” 0, “girls” 3.
  5. Teaching your cat how to sit. The score: “boys” 0, “girls” 1.

Let’s ignore the hyperbolic titles, since obviously neither book is intended to actually teach you to survive everything. However, the implications are clear: Boys need to know how to survive broken legs and earthquakes, but girls evidently will never experience that sort of thing. (Or perhaps Scholastic is assuming the girls will always have a knowledgeable boy around to help out. That sentence caused me psychological pain to even type.) Similarly, boys won’t ever need help dealing with bullies, frenemies, or learning how to camp. Either that, or (as Greg Gbur suggests) girls already know how to deal with the hard survival stuff, so they don’t need the book.


———————————————————————–

So, like, talking on a cell phone held in
one hand while engaged in this activity is so
totally NOT a survival technique. 

GIRLS ONLY: How to Survive Anything!  
Table of Contents

  • How to survive a BFF Fight (Boys don’t have friends and fight with them? What is that thing they’re doing when they’re rolling around all over the floor trying to kill each other?)
  • How to Survive Soccer Tryouts (assuming very male David Beckham once had to do this)
  • How to Survive a Breakout (like this?)
  • How to Show You’re Sorry (because being a boy means never having to show you’re sorry)
  • How to Have the Best Sleepover Ever (My sons have sleepovers; just discreetly double-checked their gonads)
  • How to Take the Perfect School Photo (like this guy did?)
  • How to Survive Brothers (My sons have brothers, two each; they could really use some tips on this)
  • Scary Survival Dos and Don’ts (if it’s scary, don’t do it)
  • How to Handle Becoming Rich (Nooo! Not RICH!)
  • How to Keep Stuff Secret (It’s like, so hard, to like, keep your mouth shut, you know?)
  • How to Survive Tests (At first I thought this said “testes,” and I was confused. That said, apparently females do have more test anxiety than males. It’s because we’re too stressed about that perfect school photo).
  • How to Survive Shyness (Have you met my husband? No? That’s because he’s shy)
  • How to Handle Sudden Stardom (Boys and men never suddenly become stars. Ever)
  • More Stardom Survival Tips (because one chapter on stardom just isn’t enough)
  • How to Survive a Camping Trip (Boys never go camping. Or they automatically know how because they have testes. Or something like that)
  • How to Survive a Fashion Disaster (You see, fashion is an equal-opportunity threat, people)
  • How to Teach Your Cat to Sit (a critical skill, no doubt, but one boys need to know, too)
  • How to Turn a No Into a Yes (I just …  no)
  • Top Tips for Speechmaking (because we’ve never, ever seen a boy give a bad speech)
  • How to Survive Embarrassment (gentlemen, clearly no concern of yours, sudden erections during algebra notwithstanding)
  • How to Be a Mind Reader (I see what you’re thinking here. No. Just no)
  • How to Survive a Crush (So for boys, is the corollary “How to Survive a Lust?”, or what?)
  • Seaside Survival (More than half of the US population lives in a coastal county. I guess all the males in that portion are expendable)
  • How to Soothe Sunburn (like this fellow did)
  • How to Pick Perfect Sunglasses (living proof that boys could use some help with this, too)
  • Surviving a Zombie Attack (two of these people are male)
  • How to Spot a Frenemy (Paul, meet John. Mick, meet Keith. Simon, meet Garfunkel. Freud, meet Jung. See? Boys have frenemies, too!)
  • Brilliant Boredom Busters (Am copying these now for my three sons, for whom a houseful of toys, books, art supplies, games, videos, and movies simply isn’t enough)
  • How to Survive Truth or Dare (see “No., Just no” above)
  • How to Beat Bullies (Is this a recommended approach? ‘Cause I need to do some time traveling, if so)
  • How to be an Amazing Babysitter (You can start by not taking a gendered approach to every single facet of existence of the child you’re babysitting)

Why don’t more girls get the HPV vaccine??

Double X Science is pleased to be able to repost, with permission, this important piece courtesy of author Kate Prengaman and her Xylem blog, focused on spreading science and new ideas.

Imagine if there was a vaccine that could prevent cancer. Everyone would want it, right?
Surprisingly, no. There IS a vaccine to prevent cervical cancer, which, according to the CDC, affects about 12,000 women every year. Unlike most cancers, cervical cancer is caused by a sexually transmitted virus, Human Papillomavirus, also known as HPV. The virus can cause abnormal cell growth in the cervix, which can turn cancerous. The vaccine, approved in 2006, works against many common strains of HPV.
The vaccine is recommended for girls ages 11-12, and also provided to women up through their early twenties.  The goal is to protect girls long before they are ever sexually active, so that they never contract HPV in the first place. As of 2011, the vaccine is also recommended for adolescent boys.
Contracting HPV is so common that more than half of all sexually active men and women in the United States will become infected with HPV at some point in their lives. According to a CDC factsheet on the HPV vaccine, “about 20 million Americans are currently affected, and 6 million more are infected every year.” In most people, HPV infections never lead to symptoms but the virus can cause development of cervical cancer and, more rarely, cancers of the vagina and anus, as well as genital warts. Furthermore, men can develop cancer from HPV. The virus is transmitted through skin to skin contact, which reduces the efficacy of condoms at preventing the spread of this disease.

Yet, despite the dangers associated with HPV, only 33.9% of American girls, ages 13-17, reported to the CDC in 2010 that they had been fully vaccinated (3 doses) against HPV.  When I mapped the state by state rates of vaccination, I found a dramatic distribution, from only 19% of girls in Idaho to nearly 60% in South Dakota and Rhode Island.

Map created by Kate Prengaman
Much of the resistance to vaccinating adolescent girls against cancer-causing HPV comes from  many people who are uncomfortable with or resistant to the fact that adolescent girls will grow up and have sex. I expected to see a strong correlation between states with Abstinence-only sex education and low vaccination rates, but the pattern in the map is weaker than I had anticipated. I also considered that the cost of the vaccines might play a role, although if they are not covered by a family’s health insurance, there are federal programs in place to subsidize the cost. There’s also some correlation there, but again, not as strong as you see, for example, when mapping teenage birthrates.
Map created by Kate Prengaman
Clearly, the pink map, lovely as it is, does not provide an answer for why more adolescent girls are not receiving the HPV vaccine. There is an unfortunate anti-vaccination movement in this country, with people choosing not to protect their kids from dangerous diseases because of unfounded fears that vaccines can cause autism, among other things. Last fall, Michelle Bachmann even used a presidential debate to stir up more fears that the HPV vaccines could cause mental disabilities, a enormous error that the medical community quickly tried to correct.
The truth is that these vaccines are safe. The truth is that HPV is really common, and it can cause cancer, and if you ever have sex, you have a good chance of getting it. Why aren’t more parents of adolescents taking the lead on protecting their kids’ future health?  If you have any ideas for other factors that might explain the patterns of vaccination, let me know in the comments and I  will try adding to my map.  Thanks!

About the guest author:

Kate Prengaman is a science writer and outdoor enthusiast currently based in Madison, WI. Formerly a botanist, Kate is pursuing her masters in science journalism at UW, reading and writing as much as possible.  She loves talking to people, telling stories, finding adventures,  geeking out over wildflowers, and eating delicious things. She blogs at Xylem