As Seen on TV! Restoring Hair with LASERS!!!!!!

The author’s rapidly-expanding forehead.

Anyone who watches TV, reads magazines, or flips through catalogs has seen some interesting products. Maybe they seem plausible to you, maybe they don’t. However, a little investigation shows they are based less on science and well…actually working, and more on wishful thinking. At worst they’re actual con-jobs, designed to separate you from your money as efficiently as possible (which I guess is a certain standard of success). As a result, we at Double X Science bring you “As Seen on TV!” In these features, we’ll look at some of the products shilled on talk shows and infomercials, items lurking between the articles you read in magazines, or things you might find on the shelves of the stores where you shop.

I admit it, I’m a balding dude. My forehead is gradually taking over my entire scalp, replacing my formerly thick and curly hair with a vast expanse of pink skin. Yes, dear readers: My hair was once so thick and curly that, when I wore it long and in a ponytail, ladies would ask me for my secret. (The answer: Wash it every other day with some brand of cheap shampoo and let it air dry. Don’t tell.) I don’t like the fact of my impending baldness, so I’m sympathetic toward defoliation-sufferers who want to bring their hair back at any cost.

On the other hand, I don’t think I’ll invest in any of the hair restoration products advertised in the SkyMall catalog I picked up on my flight to my brother’s wedding in San Francisco. I counted seven products in this single catalog promising to restore hair in one way or another, either reversing baldness or filling in thin patches on the scalp –- and that doesn’t include hair-coloring, extensions, or other options. I won’t cover all of them, but no fewer than three products pledge to bring hair back through the magic of lasers.

Ah, lasers. They may not have the mystique of magnets or the nous of “natural”, but they are a frequent ingredient in modern snake oil. (Come to think of it, one of the hair-restoration products may have contained snake oil. I don’t want to ask.) But while lasers can help correct nearsightedness in some cases, perform minimally invasive surgeries, and remove hair, color my scalp skeptical about their ability to restore hair.

First, a disclaimer: I’m not a biologist, a doctor, medical researcher, or in any field related to those. I’m a physicist, so the closest I ever get professionally to this topic is the “no-hair” theorem in black hole physics. The “no-hair” theorem says that black holes have very few distinguishing characteristics: only mass and rotational rate (and technically electric charge as well, though it’s hard to build up enough charge to make a difference). The analogy is that, if all humans were completely hairless, we would have a lot fewer ways to tell each other apart. In other words, this ain’t my area, so bear (bare) with me!

Night on Baldhead Mountain

Hair loss can occur for a wide variety of reasons: chemotherapy, a number of unrelated diseases, even stress. However, as humans (both men and women!) age, we all tend to lose our hair to some degree. The effect is most pronounced in male pattern baldness (a bare patch on the top of the head merging over time with the growing forehead to leave a fringe around the edges of the scalp) or female pattern baldness (a general loss of hair at the top of the scalp). However, past the age of 80, nearly everyone starts losing hair, regardless of genetics, diet, or health.

The reasons, as with so many other things, are hormonal. Hair production is governed by sex hormones: most famously testosterone, but also a less well-known cousin known as dihydrotestosterone (DHT). In some people, DHT commands the follicles — the small organs in the skin that produce and feed hair — to shrink, producing ever-finer hair until they cease operating entirely. Thus, gradual hair loss of the usual (as opposed to disease- or circumstance-derived) variety is generally preceded by the hair itself becoming thinner and fuzzier.

My naive understanding of the biology of hair loss leads me to suspect that since hormones are the culprit behind hair loss, then any hair restoration should address those hormones in some way. That alone makes me suspicious of the laser-based products SkyMall peddles. To see why, let’s look at lasers themselves.

Lasers (without sharks)

The word “laser” began as an acronym: Light Amplification by the Stimulated Emission of Radiation. The details could be an Everyday Science or Double Xplainer post in their own right, but here’s the short version. The lasers used in the SkyMall products are LED lasers, meaning they are based on the underlying physics as LED lights. An electric current kicks electrons or other electric charge carriers from one type of material to another across a junction. The excess energy the electric charge sheds during this process is given off in the form of a photon, a particle of light. Since the same amount of energy is involved every time, light from LEDs is nearly monochromatic, meaning it is almost purely one color.

The “amplification” part of the name comes by putting the LED into a special kind of cavity with reflective walls. These walls set up standing waves for the light, which interfere constructively like vibrations in a guitar string, making them brighter. However, unlike guitar strings, the production of the light in lasers is a self-feeding process, resulting in the different parts of the system synchronizing until they emit photons in concert with each other. It’s really interesting stuff, and while it’s somewhat complicated, there’s nothing really mysterious or magical about it, any more than magnets are magical.

In fact, LED lasers are so unmagical that you can buy them as cat toys. LED lasers are the inner workings of laser pointers, which you can buy very inexpensively at any number of shops.

The smell of frying follicles

One of three laser-based hair-restoration products from SkyMall.
This one features built-in headphones, so you can at least listen
to music while you sit around looking like a fool. However,
I recommend a cheaper set of headphones, since the $700
price tag is a bit steep, and you’d get the same result with
regards to hair restoration.
Laser hair removal uses intense lasers to selectively heat the follicles in the skin, hopefully avoiding damage to the rest of the skin. This process can slow down hair growth and cause the hair to fall out of the treated follicles, but it doesn’t always actually stop it: the treatment must be continued for a long term. Basically, the laser is damaging the follicle.

As you can imagine, that also makes me skeptical that lasers can stimulate new hair growth. Lasers produce light…and that’s it! In addition to the usual red lasers like in laser pointers, manufacturers also make infrared lasers, which are useful for surgery. While we perceive infrared as heat (which is why sunshine feels warm), I don’t think merely warming the scalp is going to make hair grow faster, or else you wouldn’t need lasers at all — an electric blanket would do just as well. Too much heating and we’re back at laser hair removal.

Similarly, visible-light lasers like the kind that seem to be in these SkyMall products simply produce red light. Because ordinary light bulbs produce a broad range of colors (white light is a mixture of all the visible-light wavelengths), sitting under a desk lamp would expose your scalp to red light. Yes, it wouldn’t be as intense as lasers, but you could do the same trick with a laser pointer from Schtaples (the Scmoffice Schmupply Schtore), provided you have the patience to hold it against your scalp for long periods of time.

The author engages in home laser hair restoration, while his cats
meow around his feet.
So, to summarize:
  • Hair loss in its most common forms is hormonal, so it’s unclear to me that light (whether laser or otherwise) has anything to do with it. Hair removal can be achieved with lasers, but that involves causing damage to hair follicles, not using anything intrinsic to light.
  • Lasers are simply very monochromatic light sources, that use synchronization of atoms on the microscopic level to do their business. There’s nothing in a laser that isn’t in ordinary light bulbs, though you can make things far more intense with a laser. However, high intensity brings us back to laser hair removal, not restoration.
  • As always, if a product sounds miraculous, it’s probably bunkum. If all it took to regrow hair was a glorified laser pointer, nobody would be bald! LED lasers are cheap and ubiquitous; we could all restore our hair without paying a company $700 (and listen to the music on inexpensive headphones, to boot).
Now if you’ll pardon me, I’ll get back to shining this laser pointer at my scalp.

Miscarriage: When a beginning is not a beginning

The “Pregnant Woman” statue
at Ireland Park, Toronto, by Rowan Gillespie

Photo credit: Benson Kua.
[Editor's note: We are pleased to be able to run this post by Dr. Kate Clancy that first appeared at Clancy's Scientific American blog, the wonderful Context and Variation. Clancy is an Assistant Professor of Anthropology at the University of Illinois. She studies the evolutionary medicine of women’s reproductive physiology, and blogs about her field, the evolution of human behavior and issues for women in science. You can follow her on Twitter--which we strongly recommend, particularly if you're interested in human behavior, evolutionary medicine, and ladybusiness--@KateClancy.]
Over the course of my training to become a biological anthropologist with a specialty in women’s reproductive ecology and life history theory, or ladybusiness expert, I have learned a lot about miscarriage. Only it wasn’t miscarriage, it was spontaneous abortion. Except that some didn’t like the term spontaneous abortion and used intrauterine mortality (Wood, 1994). Or fetal loss. Fetal loss is probably the most common.
There is also pregnancy loss (Holman and Wood, 2001). You can use that term, too. Oh, or a Continue reading

Friday Roundup: Obese babies, cancer vaccine, human hair fonts, and the grandeur of a dead tree

It’s Friday! Links to information for you to share with family, friends, children, and total strangers:

  • Babies on obesity path? Well, it’s questionable. Study says that babies who hit two growth markers before age 2 have increased risk of obesity. But only 12% of the 45,000 infants in the study who did hit the mark were obese by age 5. Two of my children have always been off the charts for growth. They are both quite slender. Researchers writing in an accompanying editorial expressed concern that using the “red flags” identified in the study may cause more harm than good.
  • Amber-encased mite A teeny mite captured along with its spider host when amber flooded them both 50 million years ago. Video below:

  • Logical fallacies: Do you like to argue? Are you invested in being right? Check yourself against these logical fallacies before you wreck yourself, online or in real life. 
  • There is grandeur, really: Want your children to see, investigate, and experience the world? Take them outside. Often. Go with them. Explore the tiniest and most intricate mysteries of nature together. A dead tree is a place to start. A beautiful post from Emily Finke.

  • Hairy typeface: Wanna gross out your kids? Or anyone, really? Show them this font made out of LEG HAIR (above). Artist Mayuko Kanazawa created the font as part of an art class assignment. Her work has already been featured in a Japanese ad campaign
  • Dogs evolved as our best friends: From NPR, how that large hairy carnivore living in your house came to be there.
  • Vax for breast/ovarian cancer? A small study, a vaccine that triggers an attack on tumor cells. Some women’s cancers stopped progressing, and one woman’s cancer vanished completely. These are patients for whom other therapies had already failed.
  • New BCPs tied to blood clots, again: The common culprit among these hormonal birth control methods is drospirenone. Hormonal birth control has always been known for increasing blood clot risks, but these versions seem to increase it even more. 
  • Three more elements added to periodic table: For chemistry and categorization junkies like my 10 year old, this is big, big news. You can visit the new elements–darmstadtium, roentgenium, and copernicium–at this interactive periodic table of elements.
  • Laughing kills pain: From Scicurious–Like a good long run, laughter may release the “natural high” chemicals known as endorphins. So, laugh loud and often.

[Photo credit: Wikimedia Commons]

Biology Explainer: The big 4 building blocks of life–carbohydrates, fats, proteins, and nucleic acids

The short version
  • The four basic categories of molecules for building life are carbohydrates, lipids, proteins, and nucleic acids.
  • Carbohydrates serve many purposes, from energy to structure to chemical communication, as monomers or polymers.
  • Lipids, which are hydrophobic, also have different purposes, including energy storage, structure, and signaling.
  • Proteins, made of amino acids in up to four structural levels, are involved in just about every process of life.                                                                                                      
  • The nucleic acids DNA and RNA consist of four nucleotide building blocks, and each has different purposes.
The longer version
Life is so diverse and unwieldy, it may surprise you to learn that we can break it down into four basic categories of molecules. Possibly even more implausible is the fact that two of these categories of large molecules themselves break down into a surprisingly small number of building blocks. The proteins that make up all of the living things on this planet and ensure their appropriate structure and smooth function consist of only 20 different kinds of building blocks. Nucleic acids, specifically DNA, are even more basic: only four different kinds of molecules provide the materials to build the countless different genetic codes that translate into all the different walking, swimming, crawling, oozing, and/or photosynthesizing organisms that populate the third rock from the Sun.


Big Molecules with Small Building Blocks

The functional groups, assembled into building blocks on backbones of carbon atoms, can be bonded together to yield large molecules that we classify into four basic categories. These molecules, in many different permutations, are the basis for the diversity that we see among living things. They can consist of thousands of atoms, but only a handful of different kinds of atoms form them. It’s like building apartment buildings using a small selection of different materials: bricks, mortar, iron, glass, and wood. Arranged in different ways, these few materials can yield a huge variety of structures.

We encountered functional groups and the SPHONC in Chapter 3. These components form the four categories of molecules of life. These Big Four biological molecules are carbohydrates, lipids, proteins, and nucleic acids. They can have many roles, from giving an organism structure to being involved in one of the millions of processes of living. Let’s meet each category individually and discover the basic roles of each in the structure and function of life.

You have met carbohydrates before, whether you know it or not. We refer to them casually as “sugars,” molecules made of carbon, hydrogen, and oxygen. A sugar molecule has a carbon backbone, usually five or six carbons in the ones we’ll discuss here, but it can be as few as three. Sugar molecules can link together in pairs or in chains or branching “trees,” either for structure or energy storage.

When you look on a nutrition label, you’ll see reference to “sugars.” That term includes carbohydrates that provide energy, which we get from breaking the chemical bonds in a sugar called glucose. The “sugars” on a nutrition label also include those that give structure to a plant, which we call fiber. Both are important nutrients for people.

Sugars serve many purposes. They give crunch to the cell walls of a plant or the exoskeleton of a beetle and chemical energy to the marathon runner. When attached to other molecules, like proteins or fats, they aid in communication between cells. But before we get any further into their uses, let’s talk structure.

The sugars we encounter most in basic biology have their five or six carbons linked together in a ring. There’s no need to dive deep into organic chemistry, but there are a couple of essential things to know to interpret the standard representations of these molecules.

Check out the sugars depicted in the figure. The top-left molecule, glucose, has six carbons, which have been numbered. The sugar to its right is the same glucose, with all but one “C” removed. The other five carbons are still there but are inferred using the conventions of organic chemistry: Anywhere there is a corner, there’s a carbon unless otherwise indicated. It might be a good exercise for you to add in a “C” over each corner so that you gain a good understanding of this convention. You should end up adding in five carbon symbols; the sixth is already given because that is conventionally included when it occurs outside of the ring.

On the left is a glucose with all of its carbons indicated. They’re also numbered, which is important to understand now for information that comes later. On the right is the same molecule, glucose, without the carbons indicated (except for the sixth one). Wherever there is a corner, there is a carbon, unless otherwise indicated (as with the oxygen). On the bottom left is ribose, the sugar found in RNA. The sugar on the bottom right is deoxyribose. Note that at carbon 2 (*), the ribose and deoxyribose differ by a single oxygen.

The lower left sugar in the figure is a ribose. In this depiction, the carbons, except the one outside of the ring, have not been drawn in, and they are not numbered. This is the standard way sugars are presented in texts. Can you tell how many carbons there are in this sugar? Count the corners and don’t forget the one that’s already indicated!

If you said “five,” you are right. Ribose is a pentose (pent = five) and happens to be the sugar present in ribonucleic acid, or RNA. Think to yourself what the sugar might be in deoxyribonucleic acid, or DNA. If you thought, deoxyribose, you’d be right.

The fourth sugar given in the figure is a deoxyribose. In organic chemistry, it’s not enough to know that corners indicate carbons. Each carbon also has a specific number, which becomes important in discussions of nucleic acids. Luckily, we get to keep our carbon counting pretty simple in basic biology. To count carbons, you start with the carbon to the right of the non-carbon corner of the molecule. The deoxyribose or ribose always looks to me like a little cupcake with a cherry on top. The “cherry” is an oxygen. To the right of that oxygen, we start counting carbons, so that corner to the right of the “cherry” is the first carbon. Now, keep counting. Here’s a little test: What is hanging down from carbon 2 of the deoxyribose?

If you said a hydrogen (H), you are right! Now, compare the deoxyribose to the ribose. Do you see the difference in what hangs off of the carbon 2 of each sugar? You’ll see that the carbon 2 of ribose has an –OH, rather than an H. The reason the deoxyribose is called that is because the O on the second carbon of the ribose has been removed, leaving a “deoxyed” ribose. This tiny distinction between the sugars used in DNA and RNA is significant enough in biology that we use it to distinguish the two nucleic acids.

In fact, these subtle differences in sugars mean big differences for many biological molecules. Below, you’ll find a couple of ways that apparently small changes in a sugar molecule can mean big changes in what it does. These little changes make the difference between a delicious sugar cookie and the crunchy exoskeleton of a dung beetle.

Sugar and Fuel

A marathon runner keeps fuel on hand in the form of “carbs,” or sugars. These fuels provide the marathoner’s straining body with the energy it needs to keep the muscles pumping. When we take in sugar like this, it often comes in the form of glucose molecules attached together in a polymer called starch. We are especially equipped to start breaking off individual glucose molecules the minute we start chewing on a starch.

Double X Extra: A monomer is a building block (mono = one) and a polymer is a chain of monomers. With a few dozen monomers or building blocks, we get millions of different polymers. That may sound nutty until you think of the infinity of values that can be built using only the numbers 0 through 9 as building blocks or the intricate programming that is done using only a binary code of zeros and ones in different combinations.

Our bodies then can rapidly take the single molecules, or monomers, into cells and crack open the chemical bonds to transform the energy for use. The bonds of a sugar are packed with chemical energy that we capture to build a different kind of energy-containing molecule that our muscles access easily. Most species rely on this process of capturing energy from sugars and transforming it for specific purposes.

Polysaccharides: Fuel and Form

Plants use the Sun’s energy to make their own glucose, and starch is actually a plant’s way of storing up that sugar. Potatoes, for example, are quite good at packing away tons of glucose molecules and are known to dieticians as a “starchy” vegetable. The glucose molecules in starch are packed fairly closely together. A string of sugar molecules bonded together through dehydration synthesis, as they are in starch, is a polymer called a polysaccharide (poly = many; saccharide = sugar). When the monomers of the polysaccharide are released, as when our bodies break them up, the reaction that releases them is called hydrolysis.

Double X Extra: The specific reaction that hooks one monomer to another in a covalent bond is called dehydration synthesis because in making the bond–synthesizing the larger molecule–a molecule of water is removed (dehydration). The reverse is hydrolysis (hydro = water; lysis = breaking), which breaks the covalent bond by the addition of a molecule of water.

Although plants make their own glucose and animals acquire it by eating the plants, animals can also package away the glucose they eat for later use. Animals, including humans, store glucose in a polysaccharide called glycogen, which is more branched than starch. In us, we build this energy reserve primarily in the liver and access it when our glucose levels drop.

Whether starch or glycogen, the glucose molecules that are stored are bonded together so that all of the molecules are oriented the same way. If you view the sixth carbon of the glucose to be a “carbon flag,” you’ll see in the figure that all of the glucose molecules in starch are oriented with their carbon flags on the upper left.

The orientation of monomers of glucose in polysaccharides can make a big difference in the use of the polymer. The glucoses in the molecule on the top are all oriented “up” and form starch. The glucoses in the molecule on the bottom alternate orientation to form cellulose, which is quite different in its function from starch.

Storing up sugars for fuel and using them as fuel isn’t the end of the uses of sugar. In fact, sugars serve as structural molecules in a huge variety of organisms, including fungi, bacteria, plants, and insects.

The primary structural role of a sugar is as a component of the cell wall, giving the organism support against gravity. In plants, the familiar old glucose molecule serves as one building block of the plant cell wall, but with a catch: The molecules are oriented in an alternating up-down fashion. The resulting structural sugar is called cellulose.

That simple difference in orientation means the difference between a polysaccharide as fuel for us and a polysaccharide as structure. Insects take it step further with the polysaccharide that makes up their exoskeleton, or outer shell. Once again, the building block is glucose, arranged as it is in cellulose, in an alternating conformation. But in insects, each glucose has a little extra added on, a chemical group called an N-acetyl group. This addition of a single functional group alters the use of cellulose and turns it into a structural molecule that gives bugs that special crunchy sound when you accidentally…ahem…step on them.

These variations on the simple theme of a basic carbon-ring-as-building-block occur again and again in biological systems. In addition to serving roles in structure and as fuel, sugars also play a role in function. The attachment of subtly different sugar molecules to a protein or a lipid is one way cells communicate chemically with one another in refined, regulated interactions. It’s as though the cells talk with each other using a specialized, sugar-based vocabulary. Typically, cells display these sugary messages to the outside world, making them available to other cells that can recognize the molecular language.

Lipids: The Fatty Trifecta

Starch makes for good, accessible fuel, something that we immediately attack chemically and break up for quick energy. But fats are energy that we are supposed to bank away for a good long time and break out in times of deprivation. Like sugars, fats serve several purposes, including as a dense source of energy and as a universal structural component of cell membranes everywhere.

Fats: the Good, the Bad, the Neutral

Turn again to a nutrition label, and you’ll see a few references to fats, also known as lipids. (Fats are slightly less confusing that sugars in that they have only two names.) The label may break down fats into categories, including trans fats, saturated fats, unsaturated fats, and cholesterol. You may have learned that trans fats are “bad” and that there is good cholesterol and bad cholesterol, but what does it all mean?

Let’s start with what we mean when we say saturated fat. The question is, saturated with what? There is a specific kind of dietary fat call the triglyceride. As its name implies, it has a structural motif in which something is repeated three times. That something is a chain of carbons and hydrogens, hanging off in triplicate from a head made of glycerol, as the figure shows.  Those three carbon-hydrogen chains, or fatty acids, are the “tri” in a triglyceride. Chains like this can be many carbons long.

Double X Extra: We call a fatty acid a fatty acid because it’s got a carboxylic acid attached to a fatty tail. A triglyceride consists of three of these fatty acids attached to a molecule called glycerol. Our dietary fat primarily consists of these triglycerides.

Triglycerides come in several forms. You may recall that carbon can form several different kinds of bonds, including single bonds, as with hydrogen, and double bonds, as with itself. A chain of carbon and hydrogens can have every single available carbon bond taken by a hydrogen in single covalent bond. This scenario of hydrogen saturation yields a saturated fat. The fat is saturated to its fullest with every covalent bond taken by hydrogens single bonded to the carbons.

Saturated fats have predictable characteristics. They lie flat easily and stick to each other, meaning that at room temperature, they form a dense solid. You will realize this if you find a little bit of fat on you to pinch. Does it feel pretty solid? That’s because animal fat is saturated fat. The fat on a steak is also solid at room temperature, and in fact, it takes a pretty high heat to loosen it up enough to become liquid. Animals are not the only organisms that produce saturated fat–avocados and coconuts also are known for their saturated fat content.

The top graphic above depicts a triglyceride with the glycerol, acid, and three hydrocarbon tails. The tails of this saturated fat, with every possible hydrogen space occupied, lie comparatively flat on one another, and this kind of fat is solid at room temperature. The fat on the bottom, however, is unsaturated, with bends or kinks wherever two carbons have double bonded, booting a couple of hydrogens and making this fat unsaturated, or lacking some hydrogens. Because of the space between the bumps, this fat is probably not solid at room temperature, but liquid.

You can probably now guess what an unsaturated fat is–one that has one or more hydrogens missing. Instead of single bonding with hydrogens at every available space, two or more carbons in an unsaturated fat chain will form a double bond with carbon, leaving no space for a hydrogen. Because some carbons in the chain share two pairs of electrons, they physically draw closer to one another than they do in a single bond. This tighter bonding result in a “kink” in the fatty acid chain.

In a fat with these kinks, the three fatty acids don’t lie as densely packed with each other as they do in a saturated fat. The kinks leave spaces between them. Thus, unsaturated fats are less dense than saturated fats and often will be liquid at room temperature. A good example of a liquid unsaturated fat at room temperature is canola oil.

A few decades ago, food scientists discovered that unsaturated fats could be resaturated or hydrogenated to behave more like saturated fats and have a longer shelf life. The process of hydrogenation–adding in hydrogens–yields trans fat. This kind of processed fat is now frowned upon and is being removed from many foods because of its associations with adverse health effects. If you check a food label and it lists among the ingredients “partially hydrogenated” oils, that can mean that the food contains trans fat.

Double X Extra: A triglyceride can have up to three different fatty acids attached to it. Canola oil, for example, consists primarily of oleic acid, linoleic acid, and linolenic acid, all of which are unsaturated fatty acids with 18 carbons in their chains.

Why do we take in fat anyway? Fat is a necessary nutrient for everything from our nervous systems to our circulatory health. It also, under appropriate conditions, is an excellent way to store up densely packaged energy for the times when stores are running low. We really can’t live very well without it.

Phospholipids: An Abundant Fat

You may have heard that oil and water don’t mix, and indeed, it is something you can observe for yourself. Drop a pat of butter–pure saturated fat–into a bowl of water and watch it just sit there. Even if you try mixing it with a spoon, it will just sit there. Now, drop a spoon of salt into the water and stir it a bit. The salt seems to vanish. You’ve just illustrated the difference between a water-fearing (hydrophobic) and a water-loving (hydrophilic) substance.

Generally speaking, compounds that have an unequal sharing of electrons (like ions or anything with a covalent bond between oxygen and hydrogen or nitrogen and hydrogen) will be hydrophilic. The reason is that a charge or an unequal electron sharing gives the molecule polarity that allows it to interact with water through hydrogen bonds. A fat, however, consists largely of hydrogen and carbon in those long chains. Carbon and hydrogen have roughly equivalent electronegativities, and their electron-sharing relationship is relatively nonpolar. Fat, lacking in polarity, doesn’t interact with water. As the butter demonstrated, it just sits there.

There is one exception to that little maxim about fat and water, and that exception is the phospholipid. This lipid has a special structure that makes it just right for the job it does: forming the membranes of cells. A phospholipid consists of a polar phosphate head–P and O don’t share equally–and a couple of nonpolar hydrocarbon tails, as the figure shows. If you look at the figure, you’ll see that one of the two tails has a little kick in it, thanks to a double bond between the two carbons there.

Phospholipids form a double layer and are the major structural components of cell membranes. Their bend, or kick, in one of the hydrocarbon tails helps ensure fluidity of the cell membrane. The molecules are bipolar, with hydrophilic heads for interacting with the internal and external watery environments of the cell and hydrophobic tails that help cell membranes behave as general security guards.

The kick and the bipolar (hydrophobic and hydrophilic) nature of the phospholipid make it the perfect molecule for building a cell membrane. A cell needs a watery outside to survive. It also needs a watery inside to survive. Thus, it must face the inside and outside worlds with something that interacts well with water. But it also must protect itself against unwanted intruders, providing a barrier that keeps unwanted things out and keeps necessary molecules in.

Phospholipids achieve it all. They assemble into a double layer around a cell but orient to allow interaction with the watery external and internal environments. On the layer facing the inside of the cell, the phospholipids orient their polar, hydrophilic heads to the watery inner environment and their tails away from it. On the layer to the outside of the cell, they do the same.
As the figure shows, the result is a double layer of phospholipids with each layer facing a polar, hydrophilic head to the watery environments. The tails of each layer face one another. They form a hydrophobic, fatty moat around a cell that serves as a general gatekeeper, much in the way that your skin does for you. Charged particles cannot simply slip across this fatty moat because they can’t interact with it. And to keep the fat fluid, one tail of each phospholipid has that little kick, giving the cell membrane a fluid, liquidy flow and keeping it from being solid and unforgiving at temperatures in which cells thrive.

Steroids: Here to Pump You Up?

Our final molecule in the lipid fatty trifecta is cholesterol. As you may have heard, there are a few different kinds of cholesterol, some of which we consider to be “good” and some of which is “bad.” The good cholesterol, high-density lipoprotein, or HDL, in part helps us out because it removes the bad cholesterol, low-density lipoprotein or LDL, from our blood. The presence of LDL is associated with inflammation of the lining of the blood vessels, which can lead to a variety of health problems.

But cholesterol has some other reasons for existing. One of its roles is in the maintenance of cell membrane fluidity. Cholesterol is inserted throughout the lipid bilayer and serves as a block to the fatty tails that might otherwise stick together and become a bit too solid.

Cholesterol’s other starring role as a lipid is as the starting molecule for a class of hormones we called steroids or steroid hormones. With a few snips here and additions there, cholesterol can be changed into the steroid hormones progesterone, testosterone, or estrogen. These molecules look quite similar, but they play very different roles in organisms. Testosterone, for example, generally masculinizes vertebrates (animals with backbones), while progesterone and estrogen play a role in regulating the ovulatory cycle.

Double X Extra: A hormone is a blood-borne signaling molecule. It can be lipid based, like testosterone, or short protein, like insulin.


As you progress through learning biology, one thing will become more and more clear: Most cells function primarily as protein factories. It may surprise you to learn that proteins, which we often talk about in terms of food intake, are the fundamental molecule of many of life’s processes. Enzymes, for example, form a single broad category of proteins, but there are millions of them, each one governing a small step in the molecular pathways that are required for living.

Levels of Structure

Amino acids are the building blocks of proteins. A few amino acids strung together is called a peptide, while many many peptides linked together form a polypeptide. When many amino acids strung together interact with each other to form a properly folded molecule, we call that molecule a protein.

For a string of amino acids to ultimately fold up into an active protein, they must first be assembled in the correct order. The code for their assembly lies in the DNA, but once that code has been read and the amino acid chain built, we call that simple, unfolded chain the primary structure of the protein.

This chain can consist of hundreds of amino acids that interact all along the sequence. Some amino acids are hydrophobic and some are hydrophilic. In this context, like interacts best with like, so the hydrophobic amino acids will interact with one another, and the hydrophilic amino acids will interact together. As these contacts occur along the string of molecules, different conformations will arise in different parts of the chain. We call these different conformations along the amino acid chain the protein’s secondary structure.

Once those interactions have occurred, the protein can fold into its final, or tertiary structure and be ready to serve as an active participant in cellular processes. To achieve the tertiary structure, the amino acid chain’s secondary interactions must usually be ongoing, and the pH, temperature, and salt balance must be just right to facilitate the folding. This tertiary folding takes place through interactions of the secondary structures along the different parts of the amino acid chain.

The final product is a properly folded protein. If we could see it with the naked eye, it might look a lot like a wadded up string of pearls, but that “wadded up” look is misleading. Protein folding is a carefully regulated process that is determined at its core by the amino acids in the chain: their hydrophobicity and hydrophilicity and how they interact together.

In many instances, however, a complete protein consists of more than one amino acid chain, and the complete protein has two or more interacting strings of amino acids. A good example is hemoglobin in red blood cells. Its job is to grab oxygen and deliver it to the body’s tissues. A complete hemoglobin protein consists of four separate amino acid chains all properly folded into their tertiary structures and interacting as a single unit. In cases like this involving two or more interacting amino acid chains, we say that the final protein has a quaternary structure. Some proteins can consist of as many as a dozen interacting chains, behaving as a single protein unit.

A Plethora of Purposes

What does a protein do? Let us count the ways. Really, that’s almost impossible because proteins do just about everything. Some of them tag things. Some of them destroy things. Some of them protect. Some mark cells as “self.” Some serve as structural materials, while others are highways or motors. They aid in communication, they operate as signaling molecules, they transfer molecules and cut them up, they interact with each other in complex, interrelated pathways to build things up and break things down. They regulate genes and package DNA, and they regulate and package each other.

As described above, proteins are the final folded arrangement of a string of amino acids. One way we obtain these building blocks for the millions of proteins our bodies make is through our diet. You may hear about foods that are high in protein or people eating high-protein diets to build muscle. When we take in those proteins, we can break them apart and use the amino acids that make them up to build proteins of our own.

Nucleic Acids

How does a cell know which proteins to make? It has a code for building them, one that is especially guarded in a cellular vault in our cells called the nucleus. This code is deoxyribonucleic acid, or DNA. The cell makes a copy of this code and send it out to specialized structures that read it and build proteins based on what they read. As with any code, a typo–a mutation–can result in a message that doesn’t make as much sense. When the code gets changed, sometimes, the protein that the cell builds using that code will be changed, too.

Biohazard!The names associated with nucleic acids can be confusing because they all start with nucle-. It may seem obvious or easy now, but a brain freeze on a test could mix you up. You need to fix in your mind that the shorter term (10 letters, four syllables), nucleotide, refers to the smaller molecule, the three-part building block. The longer term (12 characters, including the space, and five syllables), nucleic acid, which is inherent in the names DNA and RNA, designates the big, long molecule.

DNA vs. RNA: A Matter of Structure

DNA and its nucleic acid cousin, ribonucleic acid, or RNA, are both made of the same kinds of building blocks. These building blocks are called nucleotides. Each nucleotide consists of three parts: a sugar (ribose for RNA and deoxyribose for DNA), a phosphate, and a nitrogenous base. In DNA, every nucleotide has identical sugars and phosphates, and in RNA, the sugar and phosphate are also the same for every nucleotide.

So what’s different? The nitrogenous bases. DNA has a set of four to use as its coding alphabet. These are the purines, adenine and guanine, and the pyrimidines, thymine and cytosine. The nucleotides are abbreviated by their initial letters as A, G, T, and C. From variations in the arrangement and number of these four molecules, all of the diversity of life arises. Just four different types of the nucleotide building blocks, and we have you, bacteria, wombats, and blue whales.

RNA is also basic at its core, consisting of only four different nucleotides. In fact, it uses three of the same nitrogenous bases as DNA–A, G, and C–but it substitutes a base called uracil (U) where DNA uses thymine. Uracil is a pyrimidine.

DNA vs. RNA: Function Wars

An interesting thing about the nitrogenous bases of the nucleotides is that they pair with each other, using hydrogen bonds, in a predictable way. An adenine will almost always bond with a thymine in DNA or a uracil in RNA, and cytosine and guanine will almost always bond with each other. This pairing capacity allows the cell to use a sequence of DNA and build either a new DNA sequence, using the old one as a template, or build an RNA sequence to make a copy of the DNA.

These two different uses of A-T/U and C-G base pairing serve two different purposes. DNA is copied into DNA usually when a cell is preparing to divide and needs two complete sets of DNA for the new cells. DNA is copied into RNA when the cell needs to send the code out of the vault so proteins can be built. The DNA stays safely where it belongs.

RNA is really a nucleic acid jack-of-all-trades. It not only serves as the copy of the DNA but also is the main component of the two types of cellular workers that read that copy and build proteins from it. At one point in this process, the three types of RNA come together in protein assembly to make sure the job is done right.

 By Emily Willingham, DXS managing editor 
This material originally appeared in similar form in Emily Willingham’s Complete Idiot’s Guide to College Biology

From spiders to breast cancer: Leslie Brunetta talks candidly about her cancer diagnosis, treatment, and follow-up

According to Leslie Brunetta, she now has much more hair than she had last July.
We became aware of Leslie Brunetta because of her book, Spider Silk: Evolution and 400 Million Years of Spinning, Waiting, Snagging, and Mating, co-authored with Catherine L. Craig. Thanks to a piece Leslie wrote for the Concord Monitor (and excerpted here), we also learned that she is a breast cancer survivor. Leslie agreed to an interview about her experience, and in her emailed responses, she candidly talks about her diagnosis, treatment, and follow-up for her cancers, plural: She was diagnosed simultaneously with two types of breast cancer. 
DXS: In your Concord Monitor piece, you describe the link between an understanding of the way evolution happens and some of the advances in modern medicine. What led you to grasp the link between the two?

LB: I think, because I’m not a scientist (I’m an English major), a lot of things that scientists think are obvious strike me as revelations. I somehow had never realized that the search for what would turn out to be DNA began with trying to explain how, in line with the theory of evolution by natural selection, variation arises and traits are passed from generation to generation. As I was figuring out what each chapter in Spider Silk would be about, I tried to think about the questions non-biologists like me would still have about evolution when they got to that point in the book. By the time we got past dragline silk, I realized that we had so far fleshed out the ways that silk proteins could and have evolved at the genetic level. But that explanation probably wouldn’t answer readers’ questions about how, for example, abdominal spinnerets—which are unique to spiders—might have evolved: the evolution of silk is easier to untangle than the evolution of body parts, which is why we focused on it in the first place.

I decided I wanted to write a chapter on “evo-devo,” evolutionary developmental biology, partly because there was a cool genetic study on the development of spinnerets that showed they’ve evolved from limbs. Fortunately, my co-author, Cay Craig, and editor at Yale, Jean Thomson Black, okayed the idea, because that chapter wasn’t in the original proposal. Writing that chapter, I learned why it took so long—nearly a century—to get from Darwin and Mendel to Watson and Crick and then so long again to get to where we are today. If we non-scientists understand something scientific, it’s often how it works, not how a whole string of people over the course of decades building on each other’s work discovered how it works. I knew evolution was the accumulation of gene changes, but, until I wrote that chapter, it hadn’t occurred to me that people began to look for genes because they wanted to understand evolution.

So that was all in the spider part of my life. Then, a few months into the cancer part of my life, I was offered a test called Oncotype DX, which would look at genetic markers in my tumor cells to develop a risk profile that could help me decide whether I should have chemotherapy plus tamoxifen or just tamoxifen. The results turned out to be moot in my case because I had a number of positive lymph nodes, although it was reassuring to find out that the cancer was considered low risk for recurrence. But still—the idea that a genetic test could let some women avoid chemo without taking on extra risk, that’s huge. No one would want to go through chemo if it wasn’t necessary. So by then I was thinking, “Thank you, Darwin!”

And then, coincidentally, the presidential primary season was heating up, and there were a number of serious candidates (well, serious in the sense that they had enough backing to get into the debates) who proudly declared that they had no time for the theory of evolution. And year after year these stupid anti-evolution bills are introduced in various state legislatures. While I was lying on the couch hanging out in the days after chemo sessions, I started thinking, “So, given that you don’t give any credence to Darwin and his ideas, would you refuse on principle to take the Oncotype test or gene-based therapies like Gleevec or Herceptin if you had cancer or if someone in your family had cancer? Somehow I don’t think so.” That argument is not going to convince hard-core denialists (nothing will), but maybe the cognitive dissonance in connection with something as concrete as cancer will make some people who waver want to find out more.

DXS: You mention having been diagnosed with two different forms of cancer, one in each breast. Can you say what each kind was and, if possible, how they differed?

LB: Yes, I unfortunately turned out to be an “interesting” case. This is one arena where, if you possibly can, you want to avoid being interesting. At first it seemed that I had a tiny lesion that was an invasive ductal carcinoma (IDC) and that I would “just” need a lumpectomy and radiation. Luckily for me, the doctor reading my mammogram is known as an eagle eye, and she saw a few things that—given the positive finding from the biopsy—concerned her. She recommended an MRI. In fact, even though I switched to another hospital for my surgery, she sent emails there saying I should have an MRI. That turned up “concerning” spots in both breasts, which led to more biopsies, which revealed multiple tiny cancerous lesions. The only reasonable option was then a double mastectomy.

The lesions in the right breast were IDCs. About 70% of breast cancers are diagnosed as IDCs. Those cancers start with the cells lining the milk ducts. The ones in the left breast were invasive lobular carcinomas (ILCs), which start in the lobules at the end of the milk ducts. Only about 10% of breast cancers are ILCs.

Oncologists hate lobular cancer. Unlike ductal cancers, which form as clumps of cells, lobular cancers form as single-file ribbons of cells. The tissue around ductal cancer cells reacts to those cells, which is why someone may feel a lump—she’s (or he’s) not feeling the cancer itself but the inflammation of the tissue around it. And because the cells clump, they show up more readily on mammograms. Not so lobular cancers. They mostly don’t give rise to lumps and they’re hard to spot on mammograms. They snake their way through tissue for quite a while without bothering anything.

In my case, this explains why last spring felt like an unremitting downhill slide. Every time someone looked deeper, they found something worse. It turned out that on my left side, the lobular side, I had multiple positive lymph nodes, which was why I needed not just chemo but also radiation (which usually isn’t given after a mastectomy). That was the side that didn’t even show up much on the mammogram. On the right side, the ductal side, which provoked the initial suspicions, my nodes were clear. I want to write about this soon, because I want to find out more about it. I’ve only recently gotten to the place emotionally where I think I can deal with reading the research papers as opposed to more general information. By the way, the resource that most helped us better understand what my doctors were talking about was Dr. Susan Love’s Breast Book.  It was invaluable as we made our way through this process, although it turned out that I had very few decisions to make because there was usually only one good option.   

DXS: As part of your treatment, you had a double mastectomy. One of our goals with this interview is to tell women what some of these experiences with treatment are like. If you’re comfortable doing so, could you tell us a little bit about what a double mastectomy entails and what you do after one in practical terms?

LB: A mastectomy is a strange operation. In a way, it’s more of an emotional and psychological experience than a physical experience. My surgeon, who was fantastic, is a man, and when we discussed the need for the mastectomies he said that I would be surprised at how little pain would be involved and how quick the healing would be. Even though I trusted him a lot by then, my reaction was pretty much, “Like you would know, right?” But he did know. When you think about it, it’s fairly non-invasive surgery. Unless the cancer has spread to the surrounding area, which doesn’t happen very often now due to early detection, no muscle or bone is removed. (Until relatively recently, surgeons removed the major muscle in the chest wall, and sometimes even bone, because they believed it would cut the risk of recurrence. That meant that many women lost function in their arm and also experienced back problems.) None of your organs are touched. They don’t go into your abdominal cavity. Also, until recently, they removed a whole clump of underarm lymph nodes when they did lumpectomies or mastectomies. Now they usually remove just a “sentinel node,” because they know that it will give them a fairly reliable indicator of whether the cancer has spread to the other nodes. That also makes the surgery less traumatic than it used to be.

I opted not to have reconstruction. Reconstruction is a good choice for many women, but I didn’t see many benefits for me and I didn’t like the idea of a more complicated surgery. My surgery was only about two hours. I don’t remember any pain at all afterwards, and my husband says I never complained of any. I was in the hospital for just one night. By the next day, I was on ibuprofen only. The bandages came off two days after the surgery.

That’s shocking, to see your breasts gone and replaced by thin red lines, no matter how well you’ve prepared yourself. It made the cancer seem much more real in some way than it had seemed before. In comparison, the physical recovery from the surgery was fairly minor because I had no infections or complications. There were drains in place for about 10 days to collect serum, which would otherwise collect under the skin, and my husband dealt with emptying them twice a day and measuring the amount. I had to sleep on my back, propped up, because of where the drains were placed, high up on my sides, and I never really got used to that. It was a real relief to have the drains removed.

My surgeon told me to start doing stretching exercises with my arms right away, and that’s really important. I got my full range of motion back within a couple of months. But even though I had my surgery last March, I’ve noticed lately that if I don’t stretch fully, like in yoga, things tighten up. That may be because of the radiation, though, because it’s only on my left side. Things are never quite the same as they were before the surgery, though. Because I did have to have the axillary nodes out on my left side, my lymph system is disrupted. I haven’t had any real problems with lymphedema yet, and I may never, but in the early months I noticed that my hands would swell if I’d been walking around a lot, and I’d have to elevate them to get them to drain back. That rarely happens now. But I’ve been told I need to wear a compression sleeve if I fly because the change in air pressure can cause lymph to collect. Also, I’m supposed to protect my hands and arms from cuts as much as possible. It seems to me that small nicks on my fingers take longer to heal than they used to. So even though most of the time it seems like it’s all over, I guess in those purely mechanical ways it’s never over. It’s not just that you no longer have breasts, it’s also that nerves and lymph channels and bits of tissue are also missing or moved around.

The bigger question is how one deals with now lacking breasts. I’ve decided not to wear prostheses. I can get away with it because I was small breasted, I dress in relatively loose clothes anyway, and I’ve gained confidence over time that no one notices or cares and I care less now if they do notice. But getting that self-confidence took quite a while. Obviously, it has an effect on my sex life, but we have a strong bond and it’s just become a piece of that bond. The biggest thing is that it’s always a bit of a shock when I catch sight of myself naked in a mirror because it’s a reminder that I’ve had cancer and there’s no getting around the fact that that sucks.    

DXS: My mother-in-law completed radiation and chemo for breast cancer last year, and if I remember correctly, she had to go frequently for a period of weeks for radiation. Was that you experience? Can you describe for our readers what the time investment was like and what the process was like?

LB: I went for radiation 5 days a week for about 7 weeks. Three days a week, I’d usually be in and out of the hospital within 45 minutes. One day a week, I met with the radiology oncologist and a nurse to debrief, which was also a form of emotional therapy for me. And one day a week, they laid on a chair massage, and the nurse/massage therapist who gave the massage was great to talk to, so that was more therapy. Radiation was easy compared to chemo. Some people experience skin burning and fatigue, but I was lucky that I didn’t experience either. Because I’m a freelancer, the time investment wasn’t a burden for me. I’m also lucky living where I live, because I could walk to the hospital. It was a pleasant 3-mile round-trip walk, and I think the walking helped me a lot physically and mentally.
DXS: And now to the chemo. My interest in interviewing you about your experience began with a reference you made on Twitter to “chemo brain,” and of course, after reading your evolution-medical advances piece. Can you tell us a little about what the process of receiving chemotherapy is like? How long does it take? How frequently (I know this varies, but your experience)?
LB: Because of my age (I was considered young, which was always nice to hear) and state of general good health, my oncologist put me on a dose-dense AC-T schedule. This meant going for treatment every two weeks over the course of 16 weeks—8 treatment sessions. At the first 4 sessions, I was given Adriamycin and Cytoxan (AC), and the last 4 sessions I was given Taxol (T). The idea behind giving multiple drugs and giving them frequently is that they all attack cancer cells in different ways and—it goes back to evolution—by attacking them frequently and hard on different fronts, you’re trying to avoid selecting for a population that’s resistant to one or more of the drugs. They can give the drugs every two weeks to a lot of patients now because they’ve got drugs to boost the production of white blood cells, which the cancer drugs suppress. After most chemo sessions, I went back the next day for a shot of one of these drugs, Neulasta.

The chemo clinic was, bizarrely, a very relaxing place. The nurses who work there were fantastic, and the nurse assigned to me, Kathy, was always interesting to talk with. She had a great sense of humor, and she was also interested in the science behind everything we were doing, so if I ever had questions she didn’t have ready answers for, she’d find out for me. A lot of patients were there at the same time, but we each had a private space. You’d sit in a big reclining chair. They had TVs and DVDs, but I usually used it as an opportunity to read. My husband sat through the first session with me, and a close friend who had chemo for breast cancer 15 years ago sat through a few other sessions, but once I got used to it, I was comfortable being there alone. Because of the nurses, it never felt lonely.

I’d arrive and settle in. Kathy would take blood for testing red and white blood counts and, I think, liver function and some other things, and she’d insert a needle and start a saline drip while we waited for the results. I’ve always had large veins, so I opted to have the drugs administered through my arm rather than having a port implanted in my chest. Over the course of three to four hours, she’d change the IV bags. Some of the bags were drugs to protect against nausea, so I’d start to feel kind of fuzzy—I don’t think I retained a whole lot of what I read there! The Adriamycin was bright orange; they call it the Red Devil, because it can chew up your veins—sometimes it felt like it was burning but Kathy could stop that by slowing the drip. Otherwise, it was fairly uneventful. I’d have snacks and usually ate lunch while still hooked up.

I was lucky I never had any reactions to any of the drugs, so actually getting the chemo was a surprisingly pleasant experience just because of the atmosphere. On the one hand, you’re aware of all these people around you struggling with cancer and you know things aren’t going well for some of them, so it’s heartbreaking, and also makes you consider, sometimes fearfully, your own future no matter how well you’re trying to brace yourself up. But at the same time, the people working there are so positive, but not in a Pollyannaish-false way, that they helped me as I tried to stay positive. The social worker stopped in with each patient every session, and she was fantastic—I could talk out any problems or fears I had with her, and that helped a huge amount.

DXS: Would you be able to run us through a timeline of the physical effects of chemotherapy after an infusion? How long does it take before it hits hardest? My mother-in-law told me that her biggest craving, when she could eat, was for carb-heavy foods like mashed potatoes and for soups, like vegetable soup. What was your experience with that?

LB: My biggest fear when I first learned I would need chemo was nausea. My oncologist told us that they had nausea so well controlled that over the past few years, she had only had one or two patients who had experienced it. As with the surgeon’s prediction about mastectomy pain, this turned out to be true: I never had even a single moment of nausea.

But there were all sorts of other effects. For the first few days after a session, the most salient effects were actually from the mix of drugs I took to stave off nausea. I generally felt pretty fuzzy, but not necessarily sleepy—part of the mix was steroids, so you’re a little hyped. There’s no way I’d feel safe driving on those days, for example. I’d sleep well the first three nights because I took Ativan, which has an anti-nausea effect. But except for those days, my sleep was really disrupted. Partly that’s because, I’m guessing, the chemo hits certain cells in your brain and partly it’s because you get thrown into chemical menopause, so there were a lot of night hot flashes. Even though I’d already started into menopause, this chemo menopause was a lot more intense and included all the symptoms regularly associated with menopause.

By the end of the first session, I was feeling pretty joyful because it was much less bad than I had thought it would be. By the second week in the two-week cycle, I felt relatively normal. But even though it never got awful, the effects started to accumulate. My hair started to fall out the morning I was going to an award ceremony for Spider Silk. It was ok at the ceremony, but we shaved it off that night. I decided not to wear a wig. First, it was the summer, and it would have been hot. Second, I usually have close to a buzz cut, and I can’t imagine anyone would make a wig that would look anything like my hair. My kids’ attitude was that everyone would know something was wrong anyway, so I should just be bald, and that helped a lot. But it’s hard to see in people’s eyes multiple times a day their realization that you’re in a pretty bad place. Also, it’s not just your head hair that goes. So do your eyebrows, your eyelashes, your pubic hair, and most of the tiny hairs all over your skin. And as your skin cells are affected by the chemo (the chemo hits all fast-reproducing cells), your skin itself gets more sensitive and then is not protected by those tiny hairs. I remember a lot of itching. And strange things like my head sticking to my yoga mat and my reading glasses sticking to the side of my head instead of sliding over my ears.

I never lost my appetite, but I did have food cravings during the AC cycles. I wanted sushi and seaweed salad, of all things. And steak. My sense of taste went dull, so I also wanted things that tasted strong and had crunch. I stopped drinking coffee and alcohol, partly because of the sleep issues but partly because it didn’t taste very good anyway. I drank loads of water on the advice of the oncologist, the nurses, and my acupuncturist, and I think that helped a lot.

During the second cycle, I developed a fever. That was scary. I was warned that if I ever developed a fever, I should call the oncologist immediately, no matter the time of day or day of week. The problem is that your immune response is knocked down by the chemo, so what would normally be a small bacterial infection has the potential to rage out of control. I was lucky. We figured out that the source of infection was a hemorrhoid—the Adriamycin was beginning to chew into my digestive tract, a well-known side effect. (Having to pay constant attention to yet another usually private part of the body just seemed totally unfair by this point.) Oral antibiotics took care of it, which was great because I avoided having to go into the hospital and all the risks entailed with getting heavy-duty IV antibiotic treatment. And we were also able to keep on schedule with the chemo regimen, which is what you hope for.

After that, I became even more careful about avoiding infection, so I avoided public places even more than I had been. I’m very close to a couple of toddlers, and I couldn’t see them for weeks because they were in one of those toddler constant-viral stages, and I really missed them.

The Taxol seems to be much less harsh than the AC regimen, so a lot of these side effects started to ease off a bit by the second 8 weeks, which was certainly a relief.

I was lucky that I didn’t really have mouth sores or some of the other side effects. Some of this is, I think, just because besides the cancer I don’t have any other health issues. Some of it is because my husband took over everything and I don’t have a regular job, so I had the luxury of concentrating on doing what my body needed. I tried to walk every day, and I slept when I needed to, ate when and what I needed to, and went to yoga class when my immune system was ok. I also went to acupuncture every week. I know the science is iffy on that, but I think it helped me with the side effects, even if it was the placebo effect at work (I’m a big fan of the placebo effect). We also both had extraordinary emotional support from many friends and knew we could call lots of people if we needed anything. That’s huge when you’re in this kind of situation.

Currently, I’m still dealing with some minor joint pains, mostly in my wrists and feet. I wasn’t expecting this problem, but my oncologist says it’s not uncommon: they think it’s because your immune system has to re-find its proper level of function, and it can go into overdrive and set up inflammation in the joints. That’s gradually easing off, though.

Most people don’t have it as easy as I did in terms of the medical, financial, and emotional resources I had to draw on. I’m very mindful of that and very grateful.

DXS: You say that you had “few terrible side effects” and a “very cushy home situation.” I’m sure any woman would like to at least be able to experience the latter while dealing with a full-body chemical attack. What were some factors that made it “cushy” that women might be able to talk to their families or caregivers about replicating for them?

LB: As I’ve said, some of it is just circumstance. For example, my kids were old enough to be pretty self-sufficient and old enough to understand what was going on, which meant both that they needed very little from me in terms of care and also that they were less scared than they might have been if they were younger. My husband happens to be both very competent (more competent than I am) around the house and very giving. I live in Cambridge, MA, where I could actually make choices about where I wanted to be treated at each phase and know I’d get excellent, humane care and where none of the facilities I went to was more than about 20 minutes away.

Some things that women might have some control over and that their families might help nudge them toward:

  • Find doctors you trust. Ask a lot of questions and make sure you understand the answers. But don’t get hung up on survival or recurrence statistics. There’s no way to know for sure what your individual outcome will be. Go for the treatment that you and your doctors believe will give you the best chance, and then assume as much as possible that your outcome will be good.
  • Make sure you talk regularly with a social worker or other therapist who specializes in dealing with breast cancer patients. If you have fears or worries that you don’t want to talk to your partner or family about, here’s where you’ll get lots of help.
  • Find compatible friends who have also had cancer to talk to. I had friends who showed me their mastectomy scars, who showed me their reconstructions, who told me about their experiences with chemo and radiation, who told me about what life after treatment was like (is still like decades later…). And none of them told me, “You should…” They all just told me what was hard for them and what worked for them and let me figure out what worked for me. Brilliant.
  • Try to get some exercise even if you don’t feel like it. It was often when I felt least like moving around that a short walk made me feel remarkably better. But I would forget that, so my husband would remind me. Ask someone to walk with you if you’re feeling weak. Getting your circulation going seems to help the body process the chemo drugs and the waste products they create. For the same reason, drink lots of water.
  • Watch funny movies together. Laughter makes a huge difference.
  • Pamper yourself as much as possible. Let people take care of you and help as much as they’re willing. But don’t be afraid to say no to anything that you don’t want or that’s too much.

Family members and caregivers should also take care of themselves by making some time for themselves and talking to social workers or therapists if they feel the need. It’s a big, awful string of events for everyone involved, not just the patient.

DXS: In the midst of all of this, you seem to have written a fascinating book about spiders and their webs. Were you able to work while undergoing your treatments? Were there times that were better than others for attending to work? Could work be a sort of occupational therapy, when it was possible for you to do it, to keep you engaged?

LB: The book had been published about 6 months before my diagnosis. The whole cancer thing really interfered not with the writing, but with my efforts to publicize it. I had started to build toward a series of readings and had to abandon that effort. I had also started a proposal for a new book and had to put that aside. I had one radio interview in the middle of chemo, which was kind of daunting but I knew I couldn’t pass up the opportunity, and when I listen to it now, I can hear my voice sounds kind of shaky. It went well, but I was exhausted afterwards. Also invigorated, though—it made me feel like I hadn’t disappeared into the cancer. I had two streams of writing going on, both of which were therapeutic. I sent email updates about the cancer treatment to a group of friends—that was definitely psychological therapy. I also tried to keep the Spider Silk blog up to date by summarizing related research papers and other spider silk news—that was intellectual therapy. I just worked on them when I felt I wanted to. The second week of every cycle my head was usually reasonably clear.

I don’t really know whether I have chemo brain. I notice a lot of names-and-other-proper-nouns drop. But whether that’s from the chemo per se, or from the hormone changes associated with the chemically induced menopause, or just from emotional overload and intellectual distraction, I don’t know. I find that I’m thinking more clearly week by week.

DXS: What is the plan for your continued follow-up? How long will it last, what is the frequency of visits, sorts of tests, etc.?

LB: I’m on tamoxifen and I’ll be on that for probably two years and then either stay on that or go onto an aromatase inhibitor [Ed. note: these drugs block production of estrogen and are used for estrogen-sensitive cancers.] for another three years. I’ll see one of the cancer doctors every three months for at least a year, I think. They’ll ask me questions and do a physical exam and take blood samples to test for tumor markers. At some point the visits go to every six months.

For self-care, I’m exercising more, trying to lose some weight, and eating even better than I was before.

DXS: Last…if you’re comfortable detailing it…what led to your diagnosis in the first place?

LB: My breast cancer was uncovered by my annual mammogram. I’ve worried about cancer, as I suppose most people do. But I never really worried about breast cancer. My mother has 10 sisters and neither she nor any of them ever had breast cancer. I have about 20 older female cousins—I was 50 when I was diagnosed last year–and as far as I know none of them have had breast cancer. I took birth control pills for less than a year decades ago. Never smoked. Light drinker. Not overweight. Light exerciser. I breastfed both kids, although not for a full year. Never took replacement hormones. Never worked in a dangerous environment. Never had suspicious mammograms before. So on paper, I was at very low risk as far as I can figure out. After I finished intensive treatment, I was tested for BRCA1 and BRCA2 (because mutations there are associated with cancer in both breasts) and no mutations were found. Unless or until some new genetic markers are found and one of them applies to me, I think we’ll never know why I got breast cancer, other than the fact that I’ve lived long enough to get cancer. There was no lump. Even between the suspicious mammogram and ultrasound and the biopsy, none of the doctors examining me could feel a lump or anything irregular. It was a year ago this week that I got the news that the first biopsy was positive. In some ways, because I feel really good now, it’s hard to believe that this year ever happened. But in other ways, the shock of it is still with me and with the whole family. Things are good for now, though, and although I feel very unlucky that this happened in the first place, I feel extremely lucky with the medical care I received and the support I got from family and friends and especially my husband.
Leslie Brunetta’s articles and essays have appeared in the New York Times, Technology Review, and the Sewanee Review as well as on NPR and elsewhere. She is co-author, with Catherine L. Craig, of Spider Silk: Evolution and 400 Million Years of Spinning, Waiting, Snagging, and Mating (Yale University Press).

Double Xpressions: Jennifer Canale, the self-proclaimed "Flamboyant Scientist"

Jennifer Canale is a Senior Microbiologist for the United States Food and Drug Administration (FDA) in Queens, NY, as well as an adjunct microbiology lecturer for City University of NY (York College and College of Staten Island).  Jennifer is also passionate about promoting women in science and leads an annual women in science event at the FDA as a means to promote awareness about gender discrimination in the workplace.

[DXS] First, can you give me a quick overview of what your scientific background is and your current connection to science?


[JC] I have always been interested in science, and since most of my family worked in Bellvue Hospital, I was very comfortable around people in lab coats.  In the early seventies, at the age of 5, I announced to my grandfather, the X-ray technician, and his brothers (my great uncles) that I wanted to become a doctor, specifically a doctor that delivers babies.
My grandfather was proud and my uncles were dismayed. My uncle Joe said to me, “Jennifer, you mean a nurse like your cousin Joanie, right?” My cousin Joan applied to Medical School in the sixties and the same group of uncles convinced her that her fiancé, Warren, wouldn’t wait 4 years to get married and it was more lady-like to be a nurse. Today she is a retired left-handed OR nurse that specializes in cracking open chests for cardiac surgery, not so lady-like after all. So in an attempt to not have a repeat of Joanie, my grandfather jumped to my defense against his brothers and said that ‘she can be a doctor if she wanted to be’, and, furthermore, his niece Joanie was smarter and more capable than most of the doctors he worked with and shouldn’t have had to take orders from them.
My uncles agreed that there was no question of the intellectual prowess possessed by both Joanie and myself, and their reluctance came out of concern for me.  They worked in the hospital, too, and saw how male doctors would abuse the female ones and make their lives more difficult because they didn’t want to allow girls in the all-boys club. “Do you want our baby – our most precious blood – to have to fight her whole life for this? What about the family – how will she find a husband and bring us more children if she sticks her nose in a book the rest of her life?”  These arguments sounded a lot better when they were stated in Sicilian. Back then, the concept of ‘women can have it all’ – work and family – was not the norm like it is today.
My grandfather came back with his final answers to them. I was his granddaughter, I looked just like him, I was a fighter just like him, and this is America and she will be what she wants to be, ‘End of Story’. My uncles agreed that I was his granddaughter, I looked just like him, and I was a stubborn mule just like him, so he was probably right and they would pray for me and secretly hope I would change my mind.
Now this all transpired in front of me in a combination of English and Sicilian while I stood there in my denim overalls with a Tweety Bird patch. I was listening, and since I was only beginning to learn Sicilian, I only caught a couple of words: blood, children, book, change, and I misunderstood the word for fighter as “afraid.” I added to my grandfather’s “end of story” remark that I was not afraid of blood, I can learn how to deliver children from a book, and questioned why they wanted me to change- those overalls were my favorite!
My family was supportive to a point, but when I asked for an erector set for Christmas, I got a Barbie town house. When I wanted to go camping with the Girl Scouts, I was sent to dance school (but, much to my amazement, I enjoyed that until I was 17).  My parents started giving in around 3rdgrade, and I got the panda bear-shaped calculator I wanted, as well as the robot toy 2XL featuring the 8-track tape. My mom would beg me to watch Little House On the Prairie, but I preferred Star Trek (the original Kirk version), Lost in Space (Danger Will Robinson), and Land of the Lost. Of course this was all my dad’s fault according to mom – he was the sci-fi guy, but he always said, “Jen was born this way!”
My parents eventually gave up, and my uncles kept praying for that change of mind, but I spent the late seventies and early eighties winning science fairs with experiments my Uncle Ben, the electrician, rigged for me. They thought there was hope for me to be more “lady-like” in 1984 when I started high school and wanted to try out for the cheerleading squad, but the teachers advised me that “the cheer squad” was no place for an “honor student” like me. So it was off to advanced placement Biology and Chemistry, and by graduation in 1988, I was accepted to the pre-med program at NYU. 
I graduated from NYU with honors, and my parents got me two presents: my name in diamonds and a stethoscope. My grandfather bought me a set of crisp white lab coats and gloated to his brothers with a cigar in his mouth. Apparently a bet was made amongst them and from hence forward they had to call me “doctoressa,” the hybrid feminized version of doctor in Italian.
The NYU pre-med was highly competitive – a constant process of elimination from 500 students (1:3, female:male) down to only 109 of  us actually completing the program. The men thought it was strategic to flirt with the girls and convince us that we shouldn’t become doctors but instead should marry them. The guy that told me that got a punch in the stomach – in the name of the other women that worked. It was also apparent that many were planting the seeds of doubt in the pre-med females, stating that if we became doctors, then we wouldn’t be able to have a family.  In essence, we were being told that we would be giving up the chance to have children. You had to go against your “true female nature” to breed and nurture and (instead) become a selfish and testosterone-like human to make it in this field. That was the nail in the coffin for a lot of the women in my program. The most brutal tactic and final blow to confidence was when I heard someone say that “only the ugly girls become doctors because no man would want them.” 
In the nineties – halfway through college – I did change my mind, and my uncles were dancing in the streets. They thought I met a nice boy in college and I was going to settle down, give them more kids, and make sauce and meatballs on a Sunday like the good Paesana I was supposed to be. I announced I didn’t want to be an MD anymore, I wanted to be a PhD, instead. I wanted to be a SCIENTIST, do research, and maybe teach in a university.  A “Scientista”-“Professoressa” “Aiuta Dio” (which means help us god)! Back to church and the rosary beads. When I got my master’s degree in microbiology, the family was just convinced I liked to collect graduation hats.
There was a feeling among my family members that science was a “boy thing,” and my cousins teased me as a result.  They considered me a nerd and less feminine than my other girl cousins. I was told that I would never get married and have kids because I am a bookworm. Even in the mid-’90s, I had friends that told me not to tell guys that I was a scientist because they wouldn’t ask me out. I was kind of cute and only told a guy the truth about my profession if we got serious. As an experiment, I told one guy I met that I was a scientist and he said I looked too sexy to be that smart – and then he walked away.
I met discrimination on both sides of the stereotypical coin, in academia and in the work force. I was told when I was interviewing for graduate schools (and then for science jobs) that I had several strikes against me. First, strike one, my thick Staten Island/ Brooklyn accent supposedly made me sound less intelligent. My mentor in graduate school, Dr. Mark Albano, said to tell people to kiss your  “you know what” because as long as I could discuss topics like “molecular genetics” who cares how it sounds. Besides he found my accent endearing, especially because it made boring topics sound more interesting.

Strike two was my long hair.  I was told that my long hair was not practical in a scientific environment, and if I looked too glamorous on interviews I would not be taken seriously. I put my hair in a bun and toned down my make-up, but I didn’t cut it.  Apparently, I looked too feminine, especially given my major curves, and even my power suits could not hide that. Women at the time were dressing very masculine (think early Miranda on Sex in the City) to compete with men for jobs. When I got the interview for my first job with Dr. Moretti in the Reproductive Immunology Lab at St. Vincent’s Medical Center in Staten Island, I remember wearing a black and white houndstooth print sheath dress with a matching short suit jacket, accessorized with pearls.  Dr. Moretti said I was like Rosalind Franklin and Jackie Kennedy all rolled up into one, with a side order of cannoli.  


The early 2000s arrived, and attitudes toward science changed. Shows like CSI became wildly popular. Science fiction movies about transforming robots became blockbusters. People began to use technology in their everyday lives, such as smart phones, tablets, and car navigation systems, and it suddenly became “cool.”  I met my husband in 1999, and since I really was into him, I told him the truth about being a “microbiologist” from the start.  He said, and I quote, “Wow, your smart, sexy, and Sicilian – it’s like I hit the Lotto!”
My wedding was the most joyful event in our family’s history because most of them thought that would never happen.  I still get teased by my family when I give a long, drawn out scientific explanation of something or when I bake and make exact measurements of ingredients with my Pyrex bakeware with both the ounces and metric conversions. My husband responds for me and says “he learns something new everyday and hopes that our son becomes a nerd just like his mommy.” 
So now I have it all: I am a female scientist, a wife, and a mother, even though others didn’t think that would be possible.  But I always knew it would happen. I understood and forgave my uncles because I knew that they wanted to protect me, not hinder me. As for all my doubters I regularly take Dr. Albano’s advise and tell them to kiss my “you know what!”

Even my current supervisor, Maureen Coakley, recently told me in an interview that I am an “anomaly,” meaning that I am a flamboyant scientist. That was one of the best compliments I ever received. I am who I am, and that is why my playlist on my iPhone has the “Big Bang Theory Theme Song” followed by “I’m sexy and I know it!”
Times have changed. Perceptions have altered in a good way, but not entirely. Lesson learned from both academia and the school of life is that some people will get you and some people won’t. If they don’t, don’t take it personally because it is their loss and their ignorance. Some people see the person, and some see the stereotype. All you can do is try to educate them in an attempt to bust the stereotype. The only perception that matters is how you perceive yourself and use that perception as a means to become the woman that you were meant to be.
[DXS] What ways do you express yourself creatively that may not have a single thing to do with science?   
[JC]Ever since planning my wedding in 2004, I have been interested in event planning.  I have a knack at coordinating events, which I do as part of my collateral duties at FDA, where I have served as the Women’s Program Coordinator for the past 9 years.  People call me the ”Fun Fairy” because I can be very creative and take any topic, put a different and interesting spin on it, and present it to a group in very entertaining ways. My creativity is driven by my intellectualism, and I incorporate that into something fun and memorable. I always make little inexpensive favors – buy them to give out to my audience – that are”theme oriented,” and they keep them as a reminder of the event.
The people I work with have whole collections of these favors, and they remember what each one stands for. For instance, the Women’s History Month theme for one year was “Our History is Our Strength.”  Before planning this event, I had attended at NYU the Satellite Summit of National Women’s Conference hosted by Maria Shriver (then 1st Lady of California) and the First Lady, Michelle Obama. So I thought I would highlight the contributions of the First Ladies to US history. I found an educational video on the history of the First Ladies, did a presentation on the Satellite Summit, and even had a fashion show featuring of reproductions of Jacqueline Kennedy jewelry collection (my favorite first lady). I used the symbol of a “Cameo” to represent the first ladies, and so I made a huge paper one with beads on tulle on my bulletin board with pictures of the first ladies around it and gave out cameo bracelets that I made from gluing plastic cameo buttons on ribbon. Everyone still has a cameo on their desk at work, occasionally conjuring up memories of my First Ladies event.
[DXS] Do you find that your scientific background informs your creativity, even though what you do may not specifically be scientific? 

[JC]My entire life is influenced by, or even revolves around, “Science.”  I love science fiction movies, books, comic books, etc.  Any inspiration I get for any of my creative projects always has some root in something “science-related.” I also think that my background in science helps make my visions come to life. Even the smallest details like the stemware I chose for my wedding was a Mikasa pattern that resembled a DNA double helix, or a hexagonal candleholder that looked like a benzene ring (at least it did to me!).  Another example comes from my Women’s Program, when the theme was “Writing Women Back Into History.” So I found a book called The Women of Apollo, which gave the untold story of the women engineers who had critical contributions to the Apollo Space programs.  For me, all roads lead back to science.  


[DXS] Have you encountered situations in which your expression of yourself outside the bounds of science has led to people viewing you differently–either more positively or more negatively?  
[JC]I have experienced both negative and positive views by others when I am expressing my self creatively. On one hand, there were people that associate planning events with a negative stereotype of being a “party-girl” or “bimbo” type that cares more about the “girly fun” stuff than the serious business of science. On the other hand, there have been people who constantly praise me for presenting science-related topics in entertaining ways. The latter view me as a “flamboyant scientist” who shares her knowledge in an interesting manner.  In this life you will never please everyone; only seek to please yourself and your loved ones because those are the only opinions that matter.
[DXS] Have you found that your non-science expression of creativity/activity/etc. has in any way informed your understanding of science or how you may talk about it or present it to others?   
[JC]In planning these events, I have come up with a formula of sorts to create a successful soirée.  Of course, this formula is an entire science in itself. I have to consider things like timing, lighting, printed materials (programs, table cards, menus, etc.) and a gamut of other things that involve an understanding of science. I am a biologist with a minor in chemistry, but the more I do these events, the more I get into things like astronomy (for a celestial-themed wedding, for instance).  I mention lighting, which seems so simple, because it is actually quite complicated – getting the right reflections and materials to use (i.e.- LEDs, wax candles vs. battery operated, the limitations of pyrotechnics in party venues) is critical. Even in doing crafts for favors and printed materials, like event programs, I’ve learned different scientific techniques, such the right kind of bonding agent to use to attach ribbons, charms, or vinyl decorations, or even the use of edible ink in printers to make fondant or wafer decorations to put on cupcakes or cakes. It is a continuous learning experience.
[DXS] How comfortable are you expressing your femininity and in what ways? How does this expression influence people’s perception of you in, say, a scientifically oriented context?   
[JC]I am comfortable with expressing my femininity in the way I dress and conduct myself in any setting.  Although, many years ago, I was advised to dress in suits and tailored shirts similar to a man and wear neutral make-up or none at all if I wanted to be taken seriously in the scientific world, I went against the grain. I am a curvy girl, and there is no hiding my femininity. So I embrace it. I wore suits, but nothing drab – always something like a red or purple skirt suit with heels. I adhere to work environment rules like no open toe shoes in the lab, which is a safety concern, but I do not downplay my female attributes to fit in, or to present a more palatable image to my scientific peers. I do not concern myself with people’s perceptions of me based on my looks because once I “speak” and “communicate” scientific concepts, there is no question of my prowess. I am what I am, and that is a female scientist, and I pride myself in being a “stereotype buster.” 
[DXS] Do you think that the combination of your non-science creativity and scientific-related activity shifts people’s perspectives or ideas about what a scientist or science communicator is? If you’re aware of such an influence, in what way, if any, do you use it to (for example) reach a different corner of your audience or present science in a different sort of way?  

[JC]I think that being the “flamboyant scientist” works in my favor, and as a science communicator, it is effective all aspects of my life. As an adjunct professor, my students often thank me for making science fun and understandable. As a scientist, my colleagues and interns find my training methods to be memorable and actually increase their understanding of the job. As the Women’s Program Coordinator at the FDA, I create unforgettable events that people look forward to and learn a lot from. As a wife, mother, daughter, aunt, cousin, and friend, I am the “Fun Fairy” (pictured with wings and a lab coat), and their lovable nerdy girl. 
I feel my true gift is being able to communicate science.  My mentor in graduate school always told me I had the talent of taking complicated scientific ideas and expressing them in a way that anyone could understand. I have some ideas brewing involving science books for children and teens, and I would like to explore these avenues in order to share this gift with others. I would also like to get involved in maybe writing for popular science publications, if given the opportunity.
[DXS] If you had something you could say to the younger you about the role of expression and creativity in your chosen career path, what would you say?  
[JC]I would say be true to yourself. Whatever path you take career-wise, always remember that is could be something you will be doing the rest of your life. Yes, there are financial considerations to make, but if you do not have that creative outlet incorporated into your career, then you will be miserable. I am the happiest at work when I am planning a Women’s Program alongside doing experiments or going to my second job as a professor at York College. You need the creativity to keep the blood flowing. Where would science be without creativity? Find what your talent is and what makes you happy, and then apply it to your career.  That is the secret to success.

Hormonal birth control explainer: a matter of health

Politics often interferes where it has no natural business, and one of those places is the discussion among a teenager, her parents, and her doctor or between a woman and her doctor about the best choices for health. The hottest button politics is pushing right now takes the form of a tiny hormone-containing pill known popularly as the birth control pill or, simply, The Pill. This hormonal medication, when taken correctly (same time every day, every day), does indeed prevent pregnancy. But like just about any other medication, this one has multiple uses, the majority of them unrelated to pregnancy prevention.

But let’s start with pregnancy prevention first and get it out of the way. When I used to ask my students how these hormone pills work, they almost invariably answered, “By making your body think it is pregnant.” That’s not correct. We take advantage of our understanding of how our bodies regulate hormones not to mimic pregnancy, exactly, but instead to flatten out what we usually talk about as a hormone cycle. 

The Menstrual Cycle

In a hormonally cycling girl or woman, the brain talks to the ovaries and the ovaries send messages to the uterus and back to the brain. All this chat takes place via chemicals called hormones. In human females, the ovarian hormones are progesterone and estradiol, a type of estrogen, and the brain hormones are luteinizing hormoneand follicle-stimulating hormone. The levels of these four hormones drive what we think of as the menstrual cycle, which exists to prepare an egg for fertilization and to make the uterine lining ready to receive a fertilized egg, should it arrive. 

Fig. 1. Female reproductive anatomy. Credit: Jeanne Garbarino.
In the theoretical 28-day cycle, fertilization (fusion of sperm and egg), if it occurs, will happen about 14 days in, timed with ovulation, or release of the egg from the ovary into the Fallopian tube or oviduct (see video–watch for the tiny egg–and Figure 1). The fertilized egg will immediately start dividing, and a ball of cells (called a blastocyst) that ultimately develops is expected to arrive at the uterus a few days later.
If the ball of cells shows up and implants in the uterine wall, the ovary continues producing progesterone to keep that fluffy, welcoming uterine lining in place. If nothing shows up, the ovaries drop output of estradiol and progesterone so that the uterus releases its lining of cells (which girls and women recognize as their “period”), and the cycle starts all over again.

A typical cycle

The typical cycle (which almost no girl or woman seems to have) begins on day 1 when a girl or woman starts her “period.” This bleeding is the shedding of the uterine lining, a letting go of tissue because the ovaries have bottomed out production of the hormones that keep the tissue intact. During this time, the brain and ovaries are in communication. In the first two weeks of the cycle, called the “follicular phase” (see Figure 2), an ovary has the job of promoting an egg to mature. The egg is protected inside a follicle that spends about 14 days reaching maturity. During this time, the ovary produces estrogen at increasing levels, which causes thickening of the uterine lining, until the estradiol hits a peak about midway through the cycle. This spike sends a hormone signal to the brain, which responds with a hormone spike of its own.

Fig. 2. Top: Day of cycle and phases. Second row: Body temperature (at waking) through cycle.
Third row: Hormones and their levels. Fourth row: What the ovaries are doing.
Fifth row: What the uterus is doing. Via Wikimedia Commons
In the figure, you can see this spike as the red line indicating luteinizing hormone. A smaller spike of follicle-stimulating hormone (blue line), also from the brain, occurs simultaneously. These two hormones along with the estradiol peak result in the follicle expelling the egg from the ovary into the Fallopian tube, or oviduct (Figure 3, step 4). That’s ovulation.
Fun fact: Right when the estrogen spikes, a woman’s body temperature will typically drop a bit (see “Basal body temperature” in the figure), so many women have used temperature monitoring to know that ovulation is happening. Some women also may experience a phenomenon called mittelschmerz, a pain sensation on the side where ovulation is occurring; ovaries trade off follicle duties with each cycle.  

The window of time for a sperm to meet the egg is usually very short, about a day. Meanwhile, as the purple line in the “hormone level” section of Figure 2 shows, the ovary in question immediately begins pumping out progesterone, which maintains that proliferated uterine lining should a ball of dividing cells show up.
Fig. 3. Follicle cycle in the ovary. Steps 1-3, follicular phase, during
which the follicle matures with the egg inside. Step 4: Ovulation, followed by
the luteal phase. Step 5: Corpus luteum (yellow body) releases progesterone.
Step 6: corpus luteum degrades if no implantation in uterus occurs.
Via Wikimedia Commons.
The structure in the ovary responsible for this phase, the luteal phase, is the corpus luteum (“yellow body”; see Figure 3, step 5), which puts out progesterone for a couple of weeks after ovulation to keep the uterine lining in place. If nothing implants, the corpus luteum degenerates (Figure 3, step 6). If implantation takes place, this structure will (should) instead continue producing progesterone through the early weeks of pregnancy to ensure that the lining doesn’t shed.

How do hormones in a pill stop all of this?

The hormones from the brain–luteinizing hormone and follicle-stimulating hormone– spike because the brain gets signals from the ovarian hormones. When a girl or woman takes the pills, which contain synthetics of ovarian hormones, the hormone dose doesn’t peak that way. Instead, the pills expose the girl or woman to a flat daily dose of hormones (synthetic estradiol and synthetic progesterone) or hormone (synthetic progesterone only). Without these peaks (and valleys), the brain doesn’t release the hormones that trigger follicle maturation or ovulation. Without follicle maturation and ovulation, no egg will be present for fertilization.

Assorted hormonal pills. Via Wikimedia Commons.
Most prescriptions of hormone pills are for packets of 28 pills. Typically, seven of these pills–sometimes fewer–are “dummy pills.” During the time a woman takes these dummy pills, her body shows the signs of withdrawal from the hormones, usually as a fairly light bleeding for those days, known as “withdrawal bleeding.” With the lowest-dose pills, the uterine lining may proliferate very little, so that this bleeding can be quite light compared to what a woman might experience under natural hormone influences.

How important are hormonal interventions for birth control?

Every woman has a story to tell, and the stories about the importance of hormonal birth control are legion. My personal story is this: I have three children. With our last son, I had two transient ischemic attacks at the end of the pregnancy, tiny strokes resulting from high blood pressure in the pregnancy. I had to undergo an immediate induction. This was the second time I’d had this condition, called pre-eclampsia, having also had this with our first son. My OB-GYN told me under no uncertain terms that I could not–should not–get pregnant again, as a pregnancy could be life threatening.

But I’m married, happily. As my sister puts it, my husband and I “like each other.” We had to have a failsafe method of ensuring that I wouldn’t become pregnant and endanger my life. For several years, hormonal medication made that possible. After I began having cluster headaches and high blood pressure on this medication in my forties, my OB-GYN and I talked about options, and we ultimately turned to surgery to prevent pregnancy.

But surgery is almost always not reversible. For a younger woman, it’s not the temporary option that hormonal pills provide. Hormonal interventions also are available in other forms, including as a vaginal ring, intrauterine device (some are hormonal), and implants, all reversible.


One of the most important things a society can do for its own health is to ensure that women in that society have as much control as possible over their reproduction. Thanks to hormonal interventions, although I’ve been capable of childbearing for 30 years, I’ve had only three children in that time. The ability to control my childbearing has meant I’ve been able to focus on being the best woman, mother, friend, and partner I can be, not only for myself and my family, but as a contributor to society, as well.

What are other uses of hormonal interventions?

Heavy, painful, or irregular periods. Did you read that part about how flat hormone inputs can mean less build up of the uterine lining and thus less bleeding and a shorter period? Many girls and women who lack hormonal interventions experience bleeding so heavy that they become anemic. This kind of bleeding can take a girl or woman out of commission for days at a time, in addition to threatening her health. Pain and irregular bleeding also are disabling and negatively affect quality of life on a frequent basis. Taking a single pill each day can make it all better. 

Unfortunately, the current political climate can take this situation–especially for teenage girls–and cast it as a personal moral failing with implications that a girl who takes hormonal medications is a “slut,” rather than the real fact that this hormonal intervention is literally maintaining the regularity of her health.

For some context, imagine that a whenever a boy or man produced sperm, it was painful or caused extensive blood loss that resulted in anemia. Would there be any issues raised with providing a medication that successfully addressed this problem?

Polycystic ovarian syndrome. This syndrome is, at its core, an imbalance of the ovarian hormones that is associated with all kinds of problems, from acne to infertility to overweight to uterine cancer. Guess what balances those hormones back out? Yes. Hormonal medication, otherwise known as The Pill.  

Again, for some context, imagine that this syndrome affected testes instead of ovaries, and caused boys and men to become infertile, experience extreme pain in the testes, gain weight, be at risk for diabetes, and lose their hair. Would there be an issue with providing appropriate hormonal medication to address this problem?

Acne. I had a friend in high school who was on hormonal medication, not because she was sexually active (she was not) but because she struggled for years with acne. This is an FDA-approved use of this medication.

Are there health benefits of hormonal interventions?

In a word, yes. They can protect against certain cancers, including ovarian and endometrial, or uterine, cancer. Women die from these cancers, and this protection is not negligible. They may also help protect against osteoporosis, or bone loss. In cases like mine, they protect against a potentially life-threatening pregnancy.

Speaking of pregnancy, access to contraception is “the only reliable way” to reduce unwanted pregnancies and abortion rates [PDF]. Pregnancy itself is far more threatening to a girl’s (in particular) or woman’s health than hormonal contraception.

Are there health risks with hormonal interventions?

Yes. No medical intervention is without risk. In the case of hormonal interventions, lifestyle habits such as smoking can enhance risk for high blood pressure and blood clots. Age can be a factor, although–as I can attest–women no longer have to stop taking hormonal interventions after age 35 as long as they are nonsmokers and blood pressure is normal. These interventions have been associated with a decrease in some cancers, as I’ve noted, but also with an increase in others, such as liver cancer, over the long term. The effect on breast cancer risk is mixed and may have to do with how long taking the medication delays childbearing. ETA: PLoS Medicine just published a paper (open access) addressing the effects of hormonal interventions on cancer risk.
By Emily Willingham, DXS Managing Editor
Opinions expressed in this piece are my own and do not necessarily reflect the opinions of all DXS editors or contributors.

I Am Mental Illness: Anorexia–Biting Back

Battling the uninformed, insurance companies, and your own compulsions

[Ed. note: This post is the first in our series, “I Am Mental Illness,” bringing you personal experiences living with a mental illness. It’s likely that no single one of us lives a life untouched by mental illness, our own or that of someone we know. Yet in spite of their high prevalence, these disorders remain stigmatized and undersupported. To learn more about mental illness, you can start with the National Alliance on Mental Illness website. To learn more about anorexia and other eating disorders, you can start with this guidebook from the National Institute of Mental Health. Double X Science has previously featured a post by Harriet Brown describing the effects of family-based treatment for anorexia. Continue reading