HPV and cervical cancer don’t care what month it is

Young love. Like older love, it too can spread HPV.
Image via Wikimedia Commons, public domain image.

January was Cervical Cancer Awareness Month, but we’d like to note that sexually active people should be aware of cervical cancer in any month and continue the recommended preventive and early detection measures for it, which includes keeping up with Pap tests. To maintain awareness, we’re kicking off the month for lovers–February–with a post about cervical cancer and the human papillomavirus (HPV). 


One thing that cervical cancer awareness overlooks is that HPV causes not only that cancer but also can play a role in penile, vaginal, urethral, anal, and head and neck cancers. In fact,  a recent study found that about 1 in 10 men and almost 4 in 100 women are orally infected with HPV, the most common sexually transmitted virus in the United States, and HPV-related head and neck cancer rates are higher among men. Further, HPV-related oral cancers have been on the rise for about two decades now, and HPV is now responsible for about 50% of oral cancers today.

Research also shows that about 50% of college age women acquire an HPV infection within four years of becoming sexually active. In addition, an infected mother can pass HPV to her baby during childbirth, and the virus can populate the child’s larynx, causing recurrent growths that block the respiratory tract and require surgical removal.

The remainder of this post appeared initially on the Parents of Kids with Infectious Disease site, which provides information for preventing infectious disease in addition to supporting parents whose children have them. As insidious as HPV is, the vast majority of HPV infections can be prevented now with a vaccine.

Have you or a loved one ever had an abnormal Pap test result? If precancerous cells were identified, the cause was almost undoubtedly infection with human papillomavirus (HPV). Almost all cases of cervical cancer arise because of infection with this virus. Yet a vaccine can prevent infection with the strains that most commonly cause cervical cancer.


A vaccine against cancer. It’s true.


For the vaccine to work, though, a woman must have it before HPV infects her. You may find it difficult to look at your daughter, especially a pre-teen daughter, and think of that scenario. But the fact is that even if your daughter avoids all sexual contact until, say, her wedding night, she can still contract HPV from her partner. As we noted above, it happens to be the most common sexually transmitted infection.


About 20 million Americans have an HPV infection, and 6 million people become newly infected every year. Half of the people who are ever sexually active pick up an HPV infection in a lifetime. That means your daughter, even if she waits until her wedding night, has a 1 in 2 chance of contracting the virus. Unless it’s a strain that causes genital warts, HPV usually produces no symptoms, and the infected person doesn’t even know they’ve been infected.


Until the cancer shows up.


And it can show up in more places than the cervix. This virus, you see, favors a certain kind of tissue, one that happens to be present in several parts of you. This tissue, a type of epithelium, is a thin layer of the skin and mucous membranes. It’s available for viral invasion in the cervix, vagina, vulva, anus, and the mouth and pharynx. In fact, HPV is poised to replace tobacco as the major cause of oral cancers in the United States.


The virus can even sometimes pass from mother to child, causing recurrent respiratory papillomatosis, the recurrent growths in the throat that must be removed periodically and can sometimes become cancerous. It strikes about 2000 children each year in the United States.


How does a virus cause cancer? To understand that, you must first understand cancer. You may know that cells reproduce by dividing, and that cancer occurs when cells divide out of control. Behind most cancers is a malfunction in the molecules that tell cells to stop dividing. These molecules operate in a chain reaction of signaling, like a series of well-timed stoplights along a boulevard. If one starts sending an inappropriate “go” signal or fails to send a “stop” signal, the cell divides, making more cells just like it that also lack the right signals. If your body’s immune system doesn’t halt this inappropriate growth, we call it cancer.


The blueprint for building these “stop” molecules is in your genes, in your DNA sequences. As a virus, HPV also requires a blueprint to make more viruses. Viruses use the division machinery of the host cell—in you—to achieve reproduction by stealthily inserting their own DNA blueprint into the host DNA.


Sometimes, when it’s finished with the host, a virus leaves a little bit of its DNA behind. If that leftover DNA is in the middle of the blueprint for a “stop” molecule, the cell won’t even notice. It will use the contaminated instructions to build a molecule, one that no longer functions in stopping cell division. The result can be cancer.


Of the 150 HPV types or strains, about 40 of which pass through sexual contact, two in particular are associated with cancer, types 16 and 18. They are the ones that may persist for years and eventually change the cellular blueprint. The vaccines developed against those two strains are, therefore, anti-cancer vaccines.


Without a successful viral infection, viral DNA can’t disrupt your DNA. That’s what the HPV vaccine achieves against the two strains responsible for about 70% of cervical cancers. Recent high-profile people have made claims about negative effects of this vaccine, claims that have been thoroughly debunked. The Centers for Disease Control and Prevention as always offers accurate information about the side effects associated with available HPV vaccines.

This achievement against cancer, including prevention of almost 100% of precancerous cervical changes related to types 16 and 18, is important.


Worldwide, a half million women receive a cervical cancer diagnosis each year, and 250,000 women die from it. These women are somebody’s daughter, wife, sister, friend. Women from all kinds of backgrounds, with all kinds of sexual histories.


Women whose precancerous cervical changes are identified in time often still must undergo uncomfortable and sometimes painful procedures to get rid of the precancerous cells. These invasive procedures include cone biopsies that require shots to numb the cervix and removal of a chunk of tissue from it. Cone biopsies carry a risk of causing infertility or miscarriage or preterm delivery. A vaccine for your daughter could prevent it all.


HPV doesn’t care if your daughter has had sex before. It’s equally oblivious to whether the epithelium it infects is in the cervix or in the mouth or pharynx or in an adult or a child. What it does respond to is antibodies that a body makes in response to the vaccine stimulus.


Even if your daughter’s first and only sex partner passes along one of the cancer-associated strains, if she’s been vaccinated, her antibodies will take that virus out cold. It’s a straightforward prevention against a lifetime of worry—and a premature death.


For more info: Facts about the HPV vaccine from the National Cancer Institute.




By Emily Willingham, DXS managing editor

flu pic resized

25 myths about the flu vaccine debunked

Setting the record straight on the flu vaccine

by Tara Haelle
Continue reading

The Amazing Antibody and its Therapeutic Potential


NYC Campaign to alert the authorities if you see
something  suspicious.  Antibodies are like the citizens
that tell our body that something fishy is going down.

By Biology Editor, Jeanne Garbarino

There is a campaign sponsored by NYC’s Metropolitan Transit Authority (MTA) encouraging citizens to speak up if they see any activity or persons acting in a suspicious manner.  Plastered all over buses, subways, and commuter rails are posters with the following message: If you see something, say something.  This type of imagery reminds me very much of our own biological warning system programmed to, in essence, “speak up” should a suspicious character of the microscopic kind make it’s way into our bodies.  It is through our immune response that our bodies “say something” in the event of infection. 

At the very crux of the immune response are tiny proteins called antibodies, which are basically like the citizens that report any suspicious activities.  Antibodies often travel in the blood stream, and upon crossing paths with a foreign invader (bacteria, virus, etc.), an antibody will flag it down and alert the “local authorities” of the body (aka immune cells). 

For many years, scientists have been studying antibodies and their role in the immune response, revealing many aspects surrounding their structure and function.  And through these studies, we have figured out how to use antibodies in ways that go beyond the immune system.  For instance, antibodies against human chorionic growth hormone, or hCG, are the essential ingredients in home pregnancy tests.  More recently, scientists have, in many ways, harnessed the power of antibodies for pharmaceutical uses.  A very popular example of this is the drug Remicade, which is used to treat severe autoimmune diseases like rheumatoid arthritis and Crohn’s Disease.   But, what exactly are antibodies and how do they work?

Well, I am glad I asked me that question.

As I mentioned, antibodies are proteins that we make.  Specifically, they are produced by specialized immune cells called B-cells, which are the main players during our humoral immune response.  B-cells will either secrete an antibody, which can then float around the circulatory system, or the antibody can remain attached to the outside of the B-cell.  If there is something “foreign” in our bodies, such as a virus or bacterium, antibodies will recognize and attach itself to the invader, which is scientifically referred to as an antigen.  When an antibody attaches to an antigen, it signals to our body to get rid of it.  Amazingly, each antibody can only recognize 1 antigen, which is why we need so many different types of antibodies!     

To get a better idea of how antibodies work, it is important to learn their basic structure.  Antibodies are ‘Y’ shaped proteins, and have both constant and variable regions.  The constant region is the same among all antibodies within a specific class (there are several different classes), where as the variable region is the portion of the antibody that is designed to recognize a specific antigen.      

To better explain this, consider the antibody to be a lacrosse stick.  The “stick” part is the constant region, and the mesh part is the variable region.  Now consider the lacrosse ball to be the antigen (i.e. bacterium or virus).  Only the lacrosse ball that is a triangle can fit into the lacrosse stick with the triangle-shaped mesh pocket.  The same is true for the circle.  And so on.  Once the ball fits into the mesh, meaning, once the antibody binds the antigen, a cascade of events is set off, essentially sounding the alarm.  Under normal, healthy circumstances, we take care of the antigen and the infectious agent is removed. (Note: there are different classes of antibodies and each class has it’s own “stick” part.)

A basic analology for how antibodies work.
Building off our understanding of how antibodies work, scientists have been able to develop monoclonal antibody therapy, which is the use of specific antibodies to stimulate an immune response against a disease.  For instance, we now use monoclonal antibody therapy to combat a variety of cancers by injecting cancer patients with antibodies designed to recognize specific components on the surface of tumor cells.  This helps signal to the body that it should turn on the immune response and get rid of the tumor cells. 

The list of conditions where monoclonal antibody is a potential therapy is growing, and includes a variety of autoimmune diseases and cancers, post-organ transplant therapy, human respiratory syncytial virus (RSV) infections in children, and most recently hemophilia A.  Also being explored is the use of monoclonal antibody therapy for addiction, which could essentially revolutionize how we can help people kick extremely difficult habits (i.e. cocaine or methamphetamine).

Despite the thousands of tedious and repetitive assays I’ve done using antibodies in my own laboratory, I know that I can never lose sight of how amazing these little proteins are. 

———————————————-
This post is a mental appetizer for another post on monoclonal antibodies by DXS tech editor, Jeffrey Perkel. His post specifically discusses the potential use of monoclonal antibody to treat the X-linked blood disorder, hemophilia A.  Read about it here.     

Dinosaur Aunts, Bacterial Stowaways, & Insect Milk

Today’s guest post (originally posted here) is from Katie Hinde, an Assistant Professor in Human Evolutionary Biology at Harvard University.  Katie studies how variation in mother’s milk influences infant development in rhesus monkeys.  You can learn more about Katie and mammalian lactation by visiting her blog, Mammals Suck… Milk!.  Follow Katie on Twitter @Mammals_Suck.




Dinosaur Aunts, Bacterial Stowaways, & Insect Milk


Milk is everywhere. From the dairy aisle at the grocery store to the explosive cover of the Mother’s Day issue of Time magazine, the ubiquity of milk makes it easy to take for granted. But surprisingly, milk synthesis is evolutionarily older than mammals. Milk is even older than dinosaurs. Moreover, milk contains constituents that infants don’t digest, namely oligosaccharides, which are the preferred diet of the neonate’s intestinal bacteria (nom nom nom!)  And milk doesn’t just feed the infant, and the infant’s microbiome; the symbiotic bacteria are IN mother’s milk. 

Evolutionary Origins of Lactation
The fossil record, unfortunately, leaves little direct evidence of the soft-tissue structures that first secreted milk. Despite this, paleontologists can scrutinize morphological features of fossils, such as the presence or absence of milk teeth (diphyodonty), to infer clues about the emergence of “milk.” Genome-wide surveys of the expression and function of mammary genes across divergent taxa, and experimental evo-devo manipulations of particular genes also yield critical insights. As scientists begin to integrate information from complementary approaches, a clearer understanding of the evolution of lactation emerges.
 

In his recent paper, leading lactation theorist Dr. Olav Oftedal discusses the ancient origins of milk secretion (2012). He contends the first milk secretions originated ~310 million years ago (MYA) in synapsids, a lineage ancestral to mammals and contemporaries with sauropsids, the ancestors of reptiles, birds, and dinosaurs. Synapsids and sauropsids produced eggs with multiple membrane layers, known as amniote eggs. Such eggs could be laid on land. However, synapsid eggs had permeable, parchment-like shells and were vulnerable to water loss. Burying these eggs in damp soil or sand near water resources- like sea turtles do- wasn’t an option, posits Oftedal. The buried temperatures would have likely been too cold for the higher metabolism of synapsids. But incubating eggs in a nest would have evaporated water from the egg. The synapsid egg was proverbially between a rock and a hard place: too warm to bury, too permeable to incubate. 

Ophiacodon by Dmitri Bogdanov

Luckily for us, a mutation gave rise to secretions from glandular skin on the belly of the synapsid parent. This mechanism replenished water lost during incubation, allowing synapsids to lay eggs in a variety of terrestrial environments. As other mutations randomly arose and were favored by selection, milk composition became increasingly complex, incorporating nutritive, protective, and hormonal factors (Oftedal 2012). Some of these milk constituents are shunted into milk from maternal blood, some- although also present in the maternal blood stream- are regulated locally in the mammary gland, and some very special constituents are unique to milk. Lactose and oligosaccharides (a sugar with lactose at the reducing end) are two constituents unique to mammalian milk, but are interestingly divergent among mammals living today. 

Illustration by Carl Buell
Mammalian and Primate Divergences:  Milk Composition
         
Among all mammals studied to date, lactose and oligosaccharides are the primary sugars in milk. Lactose is synthesized in mammary glands only. Urashima and colleagues explain that lactose synthesis is contingent on the mammalian-specific protein alpha-lactalbumin (2012). Alpha-lactalbumin is very similar in amino-acid structure to C-type lysozyme, a more ancient protein found throughout vertebrates and insects. C-type lysozyme acts as an anti-bacterial agent. Oligosaccharides are predominant in the milks of marsupials and egg-laying monotremes (i.e. the platypus), but lactose is the most prevalent sugar in the milk of most placental (aka eutherian) mammals. Interestingly, the oligosaccharides in the milk of placental mammals are most similar to the oligosaccharides in the milk of monotremes. Unique oligosaccharides in marsupial milk emerged after the divergence of placental mammals. 

Marsupial and monotreme young seemingly digest oligosaccharides. Among placental mammals, however, young do not have the requisite enzymes in their stomach and small intestine to utilize oligosaccharides themselves. Why do eutherian mothers synthesize oligosaccharides in milk, if infants don’t digest them?

In May, Anna Petherick’s post “Multi-tasking Milk Oligosaccharides” revealed that oligosaccharides serve a number of critical roles for supporting the healthy colonization and maintenance of the infant’s intestinal microbiome. Beneficial bacterial symbionts contribute to the digestion of nutrients from our food. Just as importantly, they are an essential component of the immune system, defending their host against many ingested pathogens. The structures of milk oligosaccharides have been described for a number of primates, including humans, and data are now available from all major primate clades; strepsirrhines (i.e. lemurs), New World monkey (i.e. capuchin), Old World monkey (i.e. rhesus), and apes (i.e. chimpanzee). 

        
Among all non-human primates studied to date, Type II oligosaccharides are most prevalent (Type II oligosaccharides contain lacto-N-biose I). Type I oligosaccharides (containing N-acetyllactosamine) are absent, or in much lower concentrations than Type II(Taufik et al. 2012). 

In human milk, there is a much greater diversity and higher abundance of milk oligosaccharides than found in the milk of other primates. Most primate taxa have between 5-30 milk oligosaccharides; humans have ~200. Even more astonishingly, humans predominantly produce Type I oligosaccharides, the preferred food of the most prevalent bacterium in the healthy human infant gut- Bifidobacteria (Urashima et al 2012, Taufik et al. 2012).

         
Human infants have bigger brains and an earlier age at weaning than do our closest ape relatives. Many anthropologists have hypothesized that constituents in mother’s milk, such as higher fat concentrations or unique fatty acids, underlie these differences in human development. But only oligosaccharides, a constituent that the human infant does not itself utilize, are demonstrably derived from our primate relatives (Hinde and Milligan 2011). At some point in human evolution there must have been strong selective pressure to optimize the symbiotic relationship between the infant microbiome and the milk mothers synthesize to support it. The human and Bifidobacteria genomes show signatures of co-evolution, but the selective pressures and their timing remain to be understood.

Vertical Transmission of Bacteria via Milk
In the womb, the infant is largely protected from maternal bacteria due to the placental barrier. But upon birth, the infant is confronted by a teeming microbial milieu that is both a challenge and an opportunity. The first inoculation of commensal bacteria occurs during delivery as the infant passes through the birth canal and is exposed to a broad array of maternal microbes. Infants born via C-section are instead, and unfortunately, colonized by the microbes “running around” the hospital. But exposure to the mother’s microbiome continues long after birth. Evidence for vertical transmission of maternal bacteria via milk has been shown in rodents, monkeys(Jin et al. 2011), humans(Martin et al. 2012), and… insects. 

Yes, INSECTS!

A number of insects have evolved the ability to rely on nutritionally incomplete food sources. They are able to do so because bacteria that live inside their cells provide what the food does not. These bacteria are known as endosymbionts and the specialized cells the host provides for them to live in are called bacteriocytes. For example, the tsetse fly has a bacterium, Wigglesworthia glossinidia,* that provides B vitamins not available from blood meals. Um, if you are squeamish, don’t read the previous sentence.     
 *I submit the tsetse fly and its bacterial symbiont (Wigglesworthia glossinidia
for consideration as the number one mutualism in which the common name of the host 
and the Latin name of the bacteria are awesome to say out loud! 
Bring on your challenger teams.
Hosokawa and colleagues recently revealed the Russian nesting dolls that are bats (Miniopterus fuliginosus), bat flies (Nycteribiidae), and endosymbiotic bacteria (proposed name Aschnera chenzii)(2012). Bat flies are the obligate ectoparasites of bats (Peterson et al. 2007). They feed on the blood of their bat hosts, and for nearly their entire lifespan, bat flies live in the fur of their bat hosts. Females briefly leave their host to deposit pupae on stationary surfaces within the bat roost. 

Bat flies are even more crazy amazing because they have a uterus and provide MILK internally through the uterus to larva! Male and female bat flies have endosymbiotic bacteria living in bacteriocytes along the sides of their abdominal segments (revealed by 16S rRNA). Additionally, females host bacteria inside the milk gland tubules, “indicating the presence of endosymbiont cells in milk gland secretion”. 

The authors are not yet certain of the specific nutritional role that these bacterial endosymbionts play in the bat fly host. The bacteria may provide B vitamins, as other bacterial symbionts of blood-consuming insects are known to do. My main question is what is the exact role of the bacteria in the milk gland tubules? Are they there to add nutritional value to the milk for the larva, to stowaway in milk for vertical transmission to larva, or both?  

Conclusions
The studies described above represent new frontiers in lactation research. The capacity to secrete “milk” has been evolving since before the age of dinosaurs, but we still know relatively little about the diversity of milks produced by mammals today. Even less understood are the consequences and functions of various milk constituents in the developing neonate. Despite the many unknowns, it is increasingly evident that mother’s milk cultivates the infant’s gut bacterial communities in fascinating ways. A microbiome milk-ultivation, if you will, that has far reaching implications for human development, nutrition, and health.  Integrating an evolutionary perspective into these newly discovered complexities of milk dynamics allows us to reimagine the world of “dairy” science.

 _________________________________________________

Hinde & Milligan. 2011. Primate milk synthesis: Proximate mechanisms and ultimate perspectives. Evol Anthropol 20:9-23.
Hosokawa et al. 2012. Reductive genome evolution, host-symbiont co-speciation, and uterine transmission of endosymbiotic bacteria in bat flies. ISME Journal. 6: 577-587
Jin et al. 2011. Species diversity and abundance of lactic acid bacteria in the milk of rhesus monkeys (Macaca mulatta). J Med Primatol. 40: 52-58
Martin et al. 2012. Sharing of Bacterial Strains Between Breast Milk and Infant Feces. J Hum Lact. 28: 36-44
Oftedal 2012. The evolution of milk secretion and its ancient origins. Animal. 6: 355-368.
Peterson et al. 2007. The phylogeny and evolution of host choice in the Hippoboscoidea(Diptera) as reconstructed using four molecular markers. Mol Phylogenet Evol. 45 :111-22
Taufik et al. 2012. Structural characterization of neutral and acidic oligosaccharides in the milks of strepsirrhine primates: greater galago, aye-aye, Coquerel’s sifaka, and mongoose lemur. Glycoconj J. 29: 119-134.
Urashima, Fukuda, & Messer. 2012. Evolution of milk oligosaccharides and lactose: a hypothesis. Animal. 6: 369-374.

Why don’t more girls get the HPV vaccine??

Double X Science is pleased to be able to repost, with permission, this important piece courtesy of author Kate Prengaman and her Xylem blog, focused on spreading science and new ideas.

Imagine if there was a vaccine that could prevent cancer. Everyone would want it, right?
Surprisingly, no. There IS a vaccine to prevent cervical cancer, which, according to the CDC, affects about 12,000 women every year. Unlike most cancers, cervical cancer is caused by a sexually transmitted virus, Human Papillomavirus, also known as HPV. The virus can cause abnormal cell growth in the cervix, which can turn cancerous. The vaccine, approved in 2006, works against many common strains of HPV.
The vaccine is recommended for girls ages 11-12, and also provided to women up through their early twenties.  The goal is to protect girls long before they are ever sexually active, so that they never contract HPV in the first place. As of 2011, the vaccine is also recommended for adolescent boys.
Contracting HPV is so common that more than half of all sexually active men and women in the United States will become infected with HPV at some point in their lives. According to a CDC factsheet on the HPV vaccine, “about 20 million Americans are currently affected, and 6 million more are infected every year.” In most people, HPV infections never lead to symptoms but the virus can cause development of cervical cancer and, more rarely, cancers of the vagina and anus, as well as genital warts. Furthermore, men can develop cancer from HPV. The virus is transmitted through skin to skin contact, which reduces the efficacy of condoms at preventing the spread of this disease.

Yet, despite the dangers associated with HPV, only 33.9% of American girls, ages 13-17, reported to the CDC in 2010 that they had been fully vaccinated (3 doses) against HPV.  When I mapped the state by state rates of vaccination, I found a dramatic distribution, from only 19% of girls in Idaho to nearly 60% in South Dakota and Rhode Island.

Map created by Kate Prengaman
Much of the resistance to vaccinating adolescent girls against cancer-causing HPV comes from  many people who are uncomfortable with or resistant to the fact that adolescent girls will grow up and have sex. I expected to see a strong correlation between states with Abstinence-only sex education and low vaccination rates, but the pattern in the map is weaker than I had anticipated. I also considered that the cost of the vaccines might play a role, although if they are not covered by a family’s health insurance, there are federal programs in place to subsidize the cost. There’s also some correlation there, but again, not as strong as you see, for example, when mapping teenage birthrates.
Map created by Kate Prengaman
Clearly, the pink map, lovely as it is, does not provide an answer for why more adolescent girls are not receiving the HPV vaccine. There is an unfortunate anti-vaccination movement in this country, with people choosing not to protect their kids from dangerous diseases because of unfounded fears that vaccines can cause autism, among other things. Last fall, Michelle Bachmann even used a presidential debate to stir up more fears that the HPV vaccines could cause mental disabilities, a enormous error that the medical community quickly tried to correct.
The truth is that these vaccines are safe. The truth is that HPV is really common, and it can cause cancer, and if you ever have sex, you have a good chance of getting it. Why aren’t more parents of adolescents taking the lead on protecting their kids’ future health?  If you have any ideas for other factors that might explain the patterns of vaccination, let me know in the comments and I  will try adding to my map.  Thanks!

About the guest author:

Kate Prengaman is a science writer and outdoor enthusiast currently based in Madison, WI. Formerly a botanist, Kate is pursuing her masters in science journalism at UW, reading and writing as much as possible.  She loves talking to people, telling stories, finding adventures,  geeking out over wildflowers, and eating delicious things. She blogs at Xylem

Pregnancy 101: Fertilization is another way to come together during sex

Human ovum (egg). The zona pellucida is a thick clear girdle surrounded by
the cells of the corona radiata (radiant crown). Via Wikimedia Commons.
It was September of 2006. Due to certain events taking place on a certain evening after a certain bottle (or two) of wine, my body was transformed into a human incubator. While I will not describe the events leading up to that very moment, I will dissect the way in which we propagate our species through a magnificent process called fertilization.
During the fertilization play, there are two stars: the sperm cell and the egg cell. The sperm cell hails from a male and is the end product of a series of developmental stages occurring in the testes. The egg cell (or ovum), which is produced by a female, is the largest cell in the human body and becomes a fertilizable entity as a result of the ovulatory process. But to truly understand what is happening at the moment of fertilization, it is important to know more about the cells from which all human life is derived.
Act I: Of sperm and eggs

A sperm cell is described as having a “head” section and a “tail” section. The head, which is shaped like a flattened oval, contains most of the cellular components, including DNA. The head also contains an important structure called an acrosome, which is basically a sac containing enzymes that will help the sperm fuse with an egg (more about the acrosome below). The role of the tail portion of sperm is to act as a propeller, allowing these cells to “swim.” At the top of the tail, near where it meets the head, are a ton of tiny structures called mitochondria. These kidney-shaped components are the powerhouses of all cells, and they generate the energy required for the sperm tail to move the sperm toward its target: the egg.
The egg is a spherical cell containing the usual components, including DNA and mitochondria. However, it differs from other human cells thanks to the presence of a protective shell called the zona pellucida. The egg cell also contains millions of tiny sacs, termed cortical granules, that serve a similar function to the acrosome in sperm cells (more on the granules below).  


Act II: A sperm cell’s journey to the center of the universefemale reproductive system
Given the cyclical nature of the female menstrual cycle, the window for fertilization during each cycle is finite. However, the precise number of days per month a women is fertile remains unclear. On the low end, the window of opportunity lasts for an estimated two days, based on the survival time of the sperm and egg. On the high end, the World Health Organization estimates a fertility window of 10 days. Somewhere in the middle lies a study published in the New England Journal of Medicine, which suggests that six is the magic number of days.

Assuming the fertility window is open, getting pregnant depends on a sperm cell making it to where the egg is located. Achieving that goal is not an easy feat. To help overcome the odds, we have evolved a number of biological tactics. For instance, the volume of a typical male human ejaculate is about a half-teaspoon or more and is estimated to contain about 300 million sperm cells. To become fully active, sperm cells require modification. The acidic environment of the vagina helps with that modification, allowing sperm to gain what is called hyperactive motility, in which its whip-like tail motors it along toward the egg.

Once active, sperm cells begin their long journey through the female reproductive system. To help guide the way, the cells around the female egg emit a chemical substance that attracts sperm cells. The orientation toward these chemicals is called chemotaxis and helps the sperm cells swim in the right direction (after all, they don’t have eyes). Furthermore, sperm get a little extra boost by the contraction of the muscles lining the female reproductive tract, which aid in pushing the little guys along. But, despite all of these efforts, sperm cell death rates are quite high, and only about 200 sperm cells actually make it to the oviduct (also called the fallopian tube), where the egg awaits.

                                                

Act III: Egg marks the spot

With the target in sight, the sperm cells make a beeline for the egg. However, for successful fertilization, only a single sperm cell can fuse with the egg. If an egg fuses with more than one sperm, the outcome can be anything from a failure of fertilization to the development of an embryo and fetus, known as a partial hydatidiform mole, that has a complete extra set of chromosomes and will not survive. Luckily, the egg has ways to help ensure only one sperm fuses with it.

When it reaches the egg, the sperm cell attaches to the surface of the zona pellucida, a protective shell for the egg. For the sperm to fuse with the egg, it must first break through this shell. Enter the sperm cell’s acrosome, which acts as an enzymatic drill. This “drilling,” in combination with the propeller movement of the sperm’s tail, helps to create a hole so that the sperm cell can access the juicy bits of the egg.

This breach of the zona pellucida and fusion of the sperm and egg sets off a rapid cascade of events to block other sperm cells from penetrating the egg’s protective shell. The first response is a shift in the charge of the egg’s cell membrane from negative to positive. This change in charge creates a sort of electrical force field, repelling other sperm cells.



Though this response is lightning fast, it is a temporary measure. A more permanent solution involves the cortical granuleswithin the egg. These tiny sacs release their contents, causing the zona pellucida to harden like the setting of concrete. In effect, the egg–sperm fusion induces the egg to construct a virtually impenetrable wall. Left outside in the cold, the other, unsuccessful sperm cells die within 48 hours.  

Now that the sperm–egg fusion has gone down, the egg start the maturation required for embryo-fetal development. The fertilized egg, now called a zygote, begins its journey into the womb and immediately begins round after round of cell division, over a few weeks resulting in a multicellular organism with a heart, lungs, brain, blood, bones, muscles, and hair. It’s an amazing phenomenon that I’m honored to have experienced (although I didn’t know I was until several weeks later).

The Afterword: A note on genetics

 

A normal human cell that is not a sperm or an egg will contain 23 pairs of chromosomes, for a total of 46 chromosomes. Any deviation from this number of chromosomes will lead to developmental misfires that in most cases results in a non-viable embryo. However, in some instances, a deviation from 46 chromosomes allows for fetal development and birth. The most well-known example is Trisomy 21(having three copies of the 21st chromosome per cell instead of two), also called Down’s Syndrome.

The egg and sperm cells are unlike any other cell in our body. They’re special enough to have a special name, gametes, and they each contain one set of chromosomes, or 23 chromosomes. Because they have half the typical number per cell, when the egg and sperm cell fuse, the resulting zygote contains the typical chromosome number of 46. Now you know how we get half of our genes from our father (who made the sperm cell) and half from our mother (who made the egg cell). Did I just put in your head an image of your parents having sex? It’s the birds and the bees, folks—it applies to everyone!


All text and art except as otherwise noted: 
Jeanne Garbarino, Double X Science Editor
Twitter @JeanneGarb
Animations

I love this video, merely for the fact that it is of B-quality and has a sound track clearly inspired from a porn flick, not to mention that it helps to put things in a more visual context:

This one is great as it has more of a sci-fi Death Star appeal:




References and further reading:
  • Potter RG Jr. “Length of the Fertile Period,” Milbank Q (1961);39:132-162
  • World Health Organization. “A prospective multicentre trial of the ovulation method of natural family planning. III. Characteristics of the menstrual cycle and of the fertile phase,” Fertil Steril (1983);40:773-778
  • Allen J. Wilcox, et al. “Timing of Sexual Intercourse in Relation to Ovulation — Effects on the Probability of Conception, Survival of the Pregnancy, and Sex of the Baby,” New England Journal of Medicine, (1995); 333:1517-1521
  • Poland ML, Moghisse KS, Giblin PT, Ager JW,Olson JM. “Variation of semen measures within normal men,” Fertil Steril (1985);44:396-400
  • Alberts B, Johnson A, Lewis J, et al.Fertilization,” Molecular Biology of the Cell. 4th edition. New York: Garland Science; 2002.
  • How Human Reproduction Works” (contains a video of sperm fusing with egg)
  • Colorado State University’s “Structure of the gametes before fertilization” and “Fertilization.”