Biology Explainer: The big 4 building blocks of life–carbohydrates, fats, proteins, and nucleic acids

The short version
  • The four basic categories of molecules for building life are carbohydrates, lipids, proteins, and nucleic acids.
  • Carbohydrates serve many purposes, from energy to structure to chemical communication, as monomers or polymers.
  • Lipids, which are hydrophobic, also have different purposes, including energy storage, structure, and signaling.
  • Proteins, made of amino acids in up to four structural levels, are involved in just about every process of life.                                                                                                      
  • The nucleic acids DNA and RNA consist of four nucleotide building blocks, and each has different purposes.
The longer version
Life is so diverse and unwieldy, it may surprise you to learn that we can break it down into four basic categories of molecules. Possibly even more implausible is the fact that two of these categories of large molecules themselves break down into a surprisingly small number of building blocks. The proteins that make up all of the living things on this planet and ensure their appropriate structure and smooth function consist of only 20 different kinds of building blocks. Nucleic acids, specifically DNA, are even more basic: only four different kinds of molecules provide the materials to build the countless different genetic codes that translate into all the different walking, swimming, crawling, oozing, and/or photosynthesizing organisms that populate the third rock from the Sun.


Big Molecules with Small Building Blocks

The functional groups, assembled into building blocks on backbones of carbon atoms, can be bonded together to yield large molecules that we classify into four basic categories. These molecules, in many different permutations, are the basis for the diversity that we see among living things. They can consist of thousands of atoms, but only a handful of different kinds of atoms form them. It’s like building apartment buildings using a small selection of different materials: bricks, mortar, iron, glass, and wood. Arranged in different ways, these few materials can yield a huge variety of structures.

We encountered functional groups and the SPHONC in Chapter 3. These components form the four categories of molecules of life. These Big Four biological molecules are carbohydrates, lipids, proteins, and nucleic acids. They can have many roles, from giving an organism structure to being involved in one of the millions of processes of living. Let’s meet each category individually and discover the basic roles of each in the structure and function of life.

You have met carbohydrates before, whether you know it or not. We refer to them casually as “sugars,” molecules made of carbon, hydrogen, and oxygen. A sugar molecule has a carbon backbone, usually five or six carbons in the ones we’ll discuss here, but it can be as few as three. Sugar molecules can link together in pairs or in chains or branching “trees,” either for structure or energy storage.

When you look on a nutrition label, you’ll see reference to “sugars.” That term includes carbohydrates that provide energy, which we get from breaking the chemical bonds in a sugar called glucose. The “sugars” on a nutrition label also include those that give structure to a plant, which we call fiber. Both are important nutrients for people.

Sugars serve many purposes. They give crunch to the cell walls of a plant or the exoskeleton of a beetle and chemical energy to the marathon runner. When attached to other molecules, like proteins or fats, they aid in communication between cells. But before we get any further into their uses, let’s talk structure.

The sugars we encounter most in basic biology have their five or six carbons linked together in a ring. There’s no need to dive deep into organic chemistry, but there are a couple of essential things to know to interpret the standard representations of these molecules.

Check out the sugars depicted in the figure. The top-left molecule, glucose, has six carbons, which have been numbered. The sugar to its right is the same glucose, with all but one “C” removed. The other five carbons are still there but are inferred using the conventions of organic chemistry: Anywhere there is a corner, there’s a carbon unless otherwise indicated. It might be a good exercise for you to add in a “C” over each corner so that you gain a good understanding of this convention. You should end up adding in five carbon symbols; the sixth is already given because that is conventionally included when it occurs outside of the ring.

On the left is a glucose with all of its carbons indicated. They’re also numbered, which is important to understand now for information that comes later. On the right is the same molecule, glucose, without the carbons indicated (except for the sixth one). Wherever there is a corner, there is a carbon, unless otherwise indicated (as with the oxygen). On the bottom left is ribose, the sugar found in RNA. The sugar on the bottom right is deoxyribose. Note that at carbon 2 (*), the ribose and deoxyribose differ by a single oxygen.

The lower left sugar in the figure is a ribose. In this depiction, the carbons, except the one outside of the ring, have not been drawn in, and they are not numbered. This is the standard way sugars are presented in texts. Can you tell how many carbons there are in this sugar? Count the corners and don’t forget the one that’s already indicated!

If you said “five,” you are right. Ribose is a pentose (pent = five) and happens to be the sugar present in ribonucleic acid, or RNA. Think to yourself what the sugar might be in deoxyribonucleic acid, or DNA. If you thought, deoxyribose, you’d be right.

The fourth sugar given in the figure is a deoxyribose. In organic chemistry, it’s not enough to know that corners indicate carbons. Each carbon also has a specific number, which becomes important in discussions of nucleic acids. Luckily, we get to keep our carbon counting pretty simple in basic biology. To count carbons, you start with the carbon to the right of the non-carbon corner of the molecule. The deoxyribose or ribose always looks to me like a little cupcake with a cherry on top. The “cherry” is an oxygen. To the right of that oxygen, we start counting carbons, so that corner to the right of the “cherry” is the first carbon. Now, keep counting. Here’s a little test: What is hanging down from carbon 2 of the deoxyribose?

If you said a hydrogen (H), you are right! Now, compare the deoxyribose to the ribose. Do you see the difference in what hangs off of the carbon 2 of each sugar? You’ll see that the carbon 2 of ribose has an –OH, rather than an H. The reason the deoxyribose is called that is because the O on the second carbon of the ribose has been removed, leaving a “deoxyed” ribose. This tiny distinction between the sugars used in DNA and RNA is significant enough in biology that we use it to distinguish the two nucleic acids.

In fact, these subtle differences in sugars mean big differences for many biological molecules. Below, you’ll find a couple of ways that apparently small changes in a sugar molecule can mean big changes in what it does. These little changes make the difference between a delicious sugar cookie and the crunchy exoskeleton of a dung beetle.

Sugar and Fuel

A marathon runner keeps fuel on hand in the form of “carbs,” or sugars. These fuels provide the marathoner’s straining body with the energy it needs to keep the muscles pumping. When we take in sugar like this, it often comes in the form of glucose molecules attached together in a polymer called starch. We are especially equipped to start breaking off individual glucose molecules the minute we start chewing on a starch.

Double X Extra: A monomer is a building block (mono = one) and a polymer is a chain of monomers. With a few dozen monomers or building blocks, we get millions of different polymers. That may sound nutty until you think of the infinity of values that can be built using only the numbers 0 through 9 as building blocks or the intricate programming that is done using only a binary code of zeros and ones in different combinations.

Our bodies then can rapidly take the single molecules, or monomers, into cells and crack open the chemical bonds to transform the energy for use. The bonds of a sugar are packed with chemical energy that we capture to build a different kind of energy-containing molecule that our muscles access easily. Most species rely on this process of capturing energy from sugars and transforming it for specific purposes.

Polysaccharides: Fuel and Form

Plants use the Sun’s energy to make their own glucose, and starch is actually a plant’s way of storing up that sugar. Potatoes, for example, are quite good at packing away tons of glucose molecules and are known to dieticians as a “starchy” vegetable. The glucose molecules in starch are packed fairly closely together. A string of sugar molecules bonded together through dehydration synthesis, as they are in starch, is a polymer called a polysaccharide (poly = many; saccharide = sugar). When the monomers of the polysaccharide are released, as when our bodies break them up, the reaction that releases them is called hydrolysis.

Double X Extra: The specific reaction that hooks one monomer to another in a covalent bond is called dehydration synthesis because in making the bond–synthesizing the larger molecule–a molecule of water is removed (dehydration). The reverse is hydrolysis (hydro = water; lysis = breaking), which breaks the covalent bond by the addition of a molecule of water.

Although plants make their own glucose and animals acquire it by eating the plants, animals can also package away the glucose they eat for later use. Animals, including humans, store glucose in a polysaccharide called glycogen, which is more branched than starch. In us, we build this energy reserve primarily in the liver and access it when our glucose levels drop.

Whether starch or glycogen, the glucose molecules that are stored are bonded together so that all of the molecules are oriented the same way. If you view the sixth carbon of the glucose to be a “carbon flag,” you’ll see in the figure that all of the glucose molecules in starch are oriented with their carbon flags on the upper left.

The orientation of monomers of glucose in polysaccharides can make a big difference in the use of the polymer. The glucoses in the molecule on the top are all oriented “up” and form starch. The glucoses in the molecule on the bottom alternate orientation to form cellulose, which is quite different in its function from starch.

Storing up sugars for fuel and using them as fuel isn’t the end of the uses of sugar. In fact, sugars serve as structural molecules in a huge variety of organisms, including fungi, bacteria, plants, and insects.

The primary structural role of a sugar is as a component of the cell wall, giving the organism support against gravity. In plants, the familiar old glucose molecule serves as one building block of the plant cell wall, but with a catch: The molecules are oriented in an alternating up-down fashion. The resulting structural sugar is called cellulose.

That simple difference in orientation means the difference between a polysaccharide as fuel for us and a polysaccharide as structure. Insects take it step further with the polysaccharide that makes up their exoskeleton, or outer shell. Once again, the building block is glucose, arranged as it is in cellulose, in an alternating conformation. But in insects, each glucose has a little extra added on, a chemical group called an N-acetyl group. This addition of a single functional group alters the use of cellulose and turns it into a structural molecule that gives bugs that special crunchy sound when you accidentally…ahem…step on them.

These variations on the simple theme of a basic carbon-ring-as-building-block occur again and again in biological systems. In addition to serving roles in structure and as fuel, sugars also play a role in function. The attachment of subtly different sugar molecules to a protein or a lipid is one way cells communicate chemically with one another in refined, regulated interactions. It’s as though the cells talk with each other using a specialized, sugar-based vocabulary. Typically, cells display these sugary messages to the outside world, making them available to other cells that can recognize the molecular language.

Lipids: The Fatty Trifecta

Starch makes for good, accessible fuel, something that we immediately attack chemically and break up for quick energy. But fats are energy that we are supposed to bank away for a good long time and break out in times of deprivation. Like sugars, fats serve several purposes, including as a dense source of energy and as a universal structural component of cell membranes everywhere.

Fats: the Good, the Bad, the Neutral

Turn again to a nutrition label, and you’ll see a few references to fats, also known as lipids. (Fats are slightly less confusing that sugars in that they have only two names.) The label may break down fats into categories, including trans fats, saturated fats, unsaturated fats, and cholesterol. You may have learned that trans fats are “bad” and that there is good cholesterol and bad cholesterol, but what does it all mean?

Let’s start with what we mean when we say saturated fat. The question is, saturated with what? There is a specific kind of dietary fat call the triglyceride. As its name implies, it has a structural motif in which something is repeated three times. That something is a chain of carbons and hydrogens, hanging off in triplicate from a head made of glycerol, as the figure shows.  Those three carbon-hydrogen chains, or fatty acids, are the “tri” in a triglyceride. Chains like this can be many carbons long.

Double X Extra: We call a fatty acid a fatty acid because it’s got a carboxylic acid attached to a fatty tail. A triglyceride consists of three of these fatty acids attached to a molecule called glycerol. Our dietary fat primarily consists of these triglycerides.

Triglycerides come in several forms. You may recall that carbon can form several different kinds of bonds, including single bonds, as with hydrogen, and double bonds, as with itself. A chain of carbon and hydrogens can have every single available carbon bond taken by a hydrogen in single covalent bond. This scenario of hydrogen saturation yields a saturated fat. The fat is saturated to its fullest with every covalent bond taken by hydrogens single bonded to the carbons.

Saturated fats have predictable characteristics. They lie flat easily and stick to each other, meaning that at room temperature, they form a dense solid. You will realize this if you find a little bit of fat on you to pinch. Does it feel pretty solid? That’s because animal fat is saturated fat. The fat on a steak is also solid at room temperature, and in fact, it takes a pretty high heat to loosen it up enough to become liquid. Animals are not the only organisms that produce saturated fat–avocados and coconuts also are known for their saturated fat content.

The top graphic above depicts a triglyceride with the glycerol, acid, and three hydrocarbon tails. The tails of this saturated fat, with every possible hydrogen space occupied, lie comparatively flat on one another, and this kind of fat is solid at room temperature. The fat on the bottom, however, is unsaturated, with bends or kinks wherever two carbons have double bonded, booting a couple of hydrogens and making this fat unsaturated, or lacking some hydrogens. Because of the space between the bumps, this fat is probably not solid at room temperature, but liquid.

You can probably now guess what an unsaturated fat is–one that has one or more hydrogens missing. Instead of single bonding with hydrogens at every available space, two or more carbons in an unsaturated fat chain will form a double bond with carbon, leaving no space for a hydrogen. Because some carbons in the chain share two pairs of electrons, they physically draw closer to one another than they do in a single bond. This tighter bonding result in a “kink” in the fatty acid chain.

In a fat with these kinks, the three fatty acids don’t lie as densely packed with each other as they do in a saturated fat. The kinks leave spaces between them. Thus, unsaturated fats are less dense than saturated fats and often will be liquid at room temperature. A good example of a liquid unsaturated fat at room temperature is canola oil.

A few decades ago, food scientists discovered that unsaturated fats could be resaturated or hydrogenated to behave more like saturated fats and have a longer shelf life. The process of hydrogenation–adding in hydrogens–yields trans fat. This kind of processed fat is now frowned upon and is being removed from many foods because of its associations with adverse health effects. If you check a food label and it lists among the ingredients “partially hydrogenated” oils, that can mean that the food contains trans fat.

Double X Extra: A triglyceride can have up to three different fatty acids attached to it. Canola oil, for example, consists primarily of oleic acid, linoleic acid, and linolenic acid, all of which are unsaturated fatty acids with 18 carbons in their chains.

Why do we take in fat anyway? Fat is a necessary nutrient for everything from our nervous systems to our circulatory health. It also, under appropriate conditions, is an excellent way to store up densely packaged energy for the times when stores are running low. We really can’t live very well without it.

Phospholipids: An Abundant Fat

You may have heard that oil and water don’t mix, and indeed, it is something you can observe for yourself. Drop a pat of butter–pure saturated fat–into a bowl of water and watch it just sit there. Even if you try mixing it with a spoon, it will just sit there. Now, drop a spoon of salt into the water and stir it a bit. The salt seems to vanish. You’ve just illustrated the difference between a water-fearing (hydrophobic) and a water-loving (hydrophilic) substance.

Generally speaking, compounds that have an unequal sharing of electrons (like ions or anything with a covalent bond between oxygen and hydrogen or nitrogen and hydrogen) will be hydrophilic. The reason is that a charge or an unequal electron sharing gives the molecule polarity that allows it to interact with water through hydrogen bonds. A fat, however, consists largely of hydrogen and carbon in those long chains. Carbon and hydrogen have roughly equivalent electronegativities, and their electron-sharing relationship is relatively nonpolar. Fat, lacking in polarity, doesn’t interact with water. As the butter demonstrated, it just sits there.

There is one exception to that little maxim about fat and water, and that exception is the phospholipid. This lipid has a special structure that makes it just right for the job it does: forming the membranes of cells. A phospholipid consists of a polar phosphate head–P and O don’t share equally–and a couple of nonpolar hydrocarbon tails, as the figure shows. If you look at the figure, you’ll see that one of the two tails has a little kick in it, thanks to a double bond between the two carbons there.

Phospholipids form a double layer and are the major structural components of cell membranes. Their bend, or kick, in one of the hydrocarbon tails helps ensure fluidity of the cell membrane. The molecules are bipolar, with hydrophilic heads for interacting with the internal and external watery environments of the cell and hydrophobic tails that help cell membranes behave as general security guards.

The kick and the bipolar (hydrophobic and hydrophilic) nature of the phospholipid make it the perfect molecule for building a cell membrane. A cell needs a watery outside to survive. It also needs a watery inside to survive. Thus, it must face the inside and outside worlds with something that interacts well with water. But it also must protect itself against unwanted intruders, providing a barrier that keeps unwanted things out and keeps necessary molecules in.

Phospholipids achieve it all. They assemble into a double layer around a cell but orient to allow interaction with the watery external and internal environments. On the layer facing the inside of the cell, the phospholipids orient their polar, hydrophilic heads to the watery inner environment and their tails away from it. On the layer to the outside of the cell, they do the same.
As the figure shows, the result is a double layer of phospholipids with each layer facing a polar, hydrophilic head to the watery environments. The tails of each layer face one another. They form a hydrophobic, fatty moat around a cell that serves as a general gatekeeper, much in the way that your skin does for you. Charged particles cannot simply slip across this fatty moat because they can’t interact with it. And to keep the fat fluid, one tail of each phospholipid has that little kick, giving the cell membrane a fluid, liquidy flow and keeping it from being solid and unforgiving at temperatures in which cells thrive.

Steroids: Here to Pump You Up?

Our final molecule in the lipid fatty trifecta is cholesterol. As you may have heard, there are a few different kinds of cholesterol, some of which we consider to be “good” and some of which is “bad.” The good cholesterol, high-density lipoprotein, or HDL, in part helps us out because it removes the bad cholesterol, low-density lipoprotein or LDL, from our blood. The presence of LDL is associated with inflammation of the lining of the blood vessels, which can lead to a variety of health problems.

But cholesterol has some other reasons for existing. One of its roles is in the maintenance of cell membrane fluidity. Cholesterol is inserted throughout the lipid bilayer and serves as a block to the fatty tails that might otherwise stick together and become a bit too solid.

Cholesterol’s other starring role as a lipid is as the starting molecule for a class of hormones we called steroids or steroid hormones. With a few snips here and additions there, cholesterol can be changed into the steroid hormones progesterone, testosterone, or estrogen. These molecules look quite similar, but they play very different roles in organisms. Testosterone, for example, generally masculinizes vertebrates (animals with backbones), while progesterone and estrogen play a role in regulating the ovulatory cycle.

Double X Extra: A hormone is a blood-borne signaling molecule. It can be lipid based, like testosterone, or short protein, like insulin.


As you progress through learning biology, one thing will become more and more clear: Most cells function primarily as protein factories. It may surprise you to learn that proteins, which we often talk about in terms of food intake, are the fundamental molecule of many of life’s processes. Enzymes, for example, form a single broad category of proteins, but there are millions of them, each one governing a small step in the molecular pathways that are required for living.

Levels of Structure

Amino acids are the building blocks of proteins. A few amino acids strung together is called a peptide, while many many peptides linked together form a polypeptide. When many amino acids strung together interact with each other to form a properly folded molecule, we call that molecule a protein.

For a string of amino acids to ultimately fold up into an active protein, they must first be assembled in the correct order. The code for their assembly lies in the DNA, but once that code has been read and the amino acid chain built, we call that simple, unfolded chain the primary structure of the protein.

This chain can consist of hundreds of amino acids that interact all along the sequence. Some amino acids are hydrophobic and some are hydrophilic. In this context, like interacts best with like, so the hydrophobic amino acids will interact with one another, and the hydrophilic amino acids will interact together. As these contacts occur along the string of molecules, different conformations will arise in different parts of the chain. We call these different conformations along the amino acid chain the protein’s secondary structure.

Once those interactions have occurred, the protein can fold into its final, or tertiary structure and be ready to serve as an active participant in cellular processes. To achieve the tertiary structure, the amino acid chain’s secondary interactions must usually be ongoing, and the pH, temperature, and salt balance must be just right to facilitate the folding. This tertiary folding takes place through interactions of the secondary structures along the different parts of the amino acid chain.

The final product is a properly folded protein. If we could see it with the naked eye, it might look a lot like a wadded up string of pearls, but that “wadded up” look is misleading. Protein folding is a carefully regulated process that is determined at its core by the amino acids in the chain: their hydrophobicity and hydrophilicity and how they interact together.

In many instances, however, a complete protein consists of more than one amino acid chain, and the complete protein has two or more interacting strings of amino acids. A good example is hemoglobin in red blood cells. Its job is to grab oxygen and deliver it to the body’s tissues. A complete hemoglobin protein consists of four separate amino acid chains all properly folded into their tertiary structures and interacting as a single unit. In cases like this involving two or more interacting amino acid chains, we say that the final protein has a quaternary structure. Some proteins can consist of as many as a dozen interacting chains, behaving as a single protein unit.

A Plethora of Purposes

What does a protein do? Let us count the ways. Really, that’s almost impossible because proteins do just about everything. Some of them tag things. Some of them destroy things. Some of them protect. Some mark cells as “self.” Some serve as structural materials, while others are highways or motors. They aid in communication, they operate as signaling molecules, they transfer molecules and cut them up, they interact with each other in complex, interrelated pathways to build things up and break things down. They regulate genes and package DNA, and they regulate and package each other.

As described above, proteins are the final folded arrangement of a string of amino acids. One way we obtain these building blocks for the millions of proteins our bodies make is through our diet. You may hear about foods that are high in protein or people eating high-protein diets to build muscle. When we take in those proteins, we can break them apart and use the amino acids that make them up to build proteins of our own.

Nucleic Acids

How does a cell know which proteins to make? It has a code for building them, one that is especially guarded in a cellular vault in our cells called the nucleus. This code is deoxyribonucleic acid, or DNA. The cell makes a copy of this code and send it out to specialized structures that read it and build proteins based on what they read. As with any code, a typo–a mutation–can result in a message that doesn’t make as much sense. When the code gets changed, sometimes, the protein that the cell builds using that code will be changed, too.

Biohazard!The names associated with nucleic acids can be confusing because they all start with nucle-. It may seem obvious or easy now, but a brain freeze on a test could mix you up. You need to fix in your mind that the shorter term (10 letters, four syllables), nucleotide, refers to the smaller molecule, the three-part building block. The longer term (12 characters, including the space, and five syllables), nucleic acid, which is inherent in the names DNA and RNA, designates the big, long molecule.

DNA vs. RNA: A Matter of Structure

DNA and its nucleic acid cousin, ribonucleic acid, or RNA, are both made of the same kinds of building blocks. These building blocks are called nucleotides. Each nucleotide consists of three parts: a sugar (ribose for RNA and deoxyribose for DNA), a phosphate, and a nitrogenous base. In DNA, every nucleotide has identical sugars and phosphates, and in RNA, the sugar and phosphate are also the same for every nucleotide.

So what’s different? The nitrogenous bases. DNA has a set of four to use as its coding alphabet. These are the purines, adenine and guanine, and the pyrimidines, thymine and cytosine. The nucleotides are abbreviated by their initial letters as A, G, T, and C. From variations in the arrangement and number of these four molecules, all of the diversity of life arises. Just four different types of the nucleotide building blocks, and we have you, bacteria, wombats, and blue whales.

RNA is also basic at its core, consisting of only four different nucleotides. In fact, it uses three of the same nitrogenous bases as DNA–A, G, and C–but it substitutes a base called uracil (U) where DNA uses thymine. Uracil is a pyrimidine.

DNA vs. RNA: Function Wars

An interesting thing about the nitrogenous bases of the nucleotides is that they pair with each other, using hydrogen bonds, in a predictable way. An adenine will almost always bond with a thymine in DNA or a uracil in RNA, and cytosine and guanine will almost always bond with each other. This pairing capacity allows the cell to use a sequence of DNA and build either a new DNA sequence, using the old one as a template, or build an RNA sequence to make a copy of the DNA.

These two different uses of A-T/U and C-G base pairing serve two different purposes. DNA is copied into DNA usually when a cell is preparing to divide and needs two complete sets of DNA for the new cells. DNA is copied into RNA when the cell needs to send the code out of the vault so proteins can be built. The DNA stays safely where it belongs.

RNA is really a nucleic acid jack-of-all-trades. It not only serves as the copy of the DNA but also is the main component of the two types of cellular workers that read that copy and build proteins from it. At one point in this process, the three types of RNA come together in protein assembly to make sure the job is done right.

 By Emily Willingham, DXS managing editor 
This material originally appeared in similar form in Emily Willingham’s Complete Idiot’s Guide to College Biology

Opinion: Balancing work and home life

First move is ours: Ditch the guilt weighing you down.

by Jeanne Garbarino

On Monday, April 15th, two very profound things happened.

The first event was and is nothing less than harrowing and wretched. That afternoon, two bombs were detonated at the finish line of the Boston Marathon. This senseless act robbed this earth of three lives, including an eight-year-old boy, and resulted in countless injuries, many severe. Word of this tragedy spread rapidly, resulting in a global outpouring of compassion.

The second event was much more isolated, affecting only a handful of people, including me. Just hours after the news from Boston started streaming in, I joined my colleagues at The Rockefeller University in a discussion about work-life balance led by Anne-Marie Slaughter. Slaughter, who was catapulted into the limelight after her famous (infamous?) Atlantic article “Why Women Can’t Have It All,” presented compelling and honest points about gender equity in the workplace, and the current devaluing of the caretaker role versus that of the breadwinner. While it was a minor point in her presentation, Slaughter said something that burned into my brain: One of the most common things people say on their deathbeds is that they wished they’d spent more time with their family, that they had worked less.

The juxtaposition of these two events in my personal space-time continuum has made me seriously reevaluate what the hell I am actually doing in my life. On one hand, I am a caregiver. I have two special and very Continue reading

Aren’t you curious?

Source: IFLS
By Courtney Williams, DXS contributor
Recently my on-line science pal Emily J. Willingham asked on Facebook,
“You are a consumer of science. As one, what bothers you about how science is offered to you? What questions do you have? How do you consume scientific information? How do you use it?”
She’s going to be blogging on the Forbes network, see her here, and I’m guessing this was the impetus for that particular set of questions.I had much to say in answer to her questions.
One of my biggest pet peeves is that the most sensational headlines are used- even if they are entirely inaccurate scientifically. For example the recent news about small pox and breast cancer. Headlines like, “New smallpox virus could ‘cure’ breast cancer, studies reveal.” How many ways is that wrong?  Well, it’s not smallpox the researchers were using, it’s a vaccinia virus, which is in the same family as the smallpox virus. Big difference. For instance, there wasn’t a global effort to eradicate cowpox- another vaccinia family member. Just because the viruses are related doesn’t mean they are the same thing. Also, what’s with the quotation marks around cure?Maybe because it’s not actually a cure, not even a treatment, just an interesting experiment done in mice- but cure (even in quotes) makes for a better headline. [If you want to learn about the real science behind that crappy headline, here's the original paper- "Vaccinia Virus GLV-1h153 Is Effective in Treating and Preventing Metastatic Triple-Negative Breast Cancer"]
Articles rarely cite their scientific sources- i.e. linking to the actual journal article they are writing about. For instance, the craptastic example above where the ‘journalist’ (how’s that for quotation marks?) not only failed to link to the original article, he didn’t even mention the journal it was published in, when it was published, or any other info (other than the lead author’s name) that would help a reader find the journal article or additional info on it.
As for sources, it’s important to distinguish for the reader between peer reviewed journal articles and mere opinion pieces on blogs. Take for instance the blog post I wrote about here that appeared on the website of Psychology Today. Many news outlets picked it up and touted it as research that showed it was dangerous to let your infant ‘cry it out’ when really it was just a post (poorly researched, lacking citations, and full of unsupported conjecture and opinion) on the blog of a psychologist. A blog post is NOT the same thing as a peer reviewed journal article. Please journalists, know this!
Another gripe, accuracy is sacrificed for the sake of brevity, which completely defeats the purpose of sharing the science. See above yet again about smallpox as a ‘cure’ for breast cancer.
Another problem I have is the way the media handles funding sources for research studies- they always matter, it’s imperative that scientists report any conflicts of interest that funding sources might prove to be. However, they are not always a sign that researchers are ‘in cahoots’ with the companies that fund them. For instance, would you trust RJ Reynolds to fund unbiased research on smoking and cancer? Probably not. Thus, if at the end of a research article you see a company with a known bias and the findings support their assertions, you are right to be skeptical. However, sometimes the funding merely means a company paid for work to be done, regardless of the outcome. For instance, a pharma company that partners with an academic lab on basic science and published the results in a peer reviewed journal. Or, a drug company that funds the clinical trials for it’s drugs. That’s just the way it works- who else would fund the trial if not the manufacturer? If those types of studies are published in peer reviewed journals, they have been vetted to that extent. Further, with clinical trials, the Federal Drug Administration (FDA) oversees all those trials to help ensure they are unbiased and protect the patients involved as well as the public as a whole. The media seems unable to distinguish.
As for how I generally consume science/scientific information? It’s usually as follows- hear about it on the radio or read a lame article via Yahoo News/Strollerderby/The Stir/etc., assume the author is either full of bologna, got the science partly/mostly wrong, had their more level-headed title replaced by an editor, is totally biased, etc., then I track down the original research article, and possibly seek out commentaries on the work from reliable sources (SciAm blogsDouble X Science, fellow scientists, etc.).
What about how I use it? Well, obviously I’m a scientist, so I ‘use’ science/scientific information professionally every single (work) day to try and cure (no quotation marks) and/or treat cancer. In my personal life, science helps me make healthcare decisions for myself and my family, decide which products to buy or to avoid, answer questions about the natural world when my toddler asks, as  material to blog about and use to dispel misconceptions held by myself and others.
However, a lot of the time I don’t necessarily even use the science I consume. Sometimes I just want to know it. I’m curious.
Pretty frequently people ask me, “How do you know that?” or “Why do you even know that?” I’m not sure how to answer. If it’s a medical question, a lot of the times the answer is, “Well, I have that body part and I want to know how it works.” Or, “Well, I’m taking that medicine, so I looked up how it works.” People forget that science is the basis of everything- it’s how everything works or came to be.  While others seem to find it odd that I’m always looking up the science behind was I see/do/hear about, I find it odd that other don’t seem to question enough.
You’re taking that medicine, you’re having that surgery, you’re using that product right now- don’t you wonder how/why it works? Why aren’t you wondering?
Where’s your curiosity? Don’t you just want to know why the sky is blue? How did you came to be? Why are roses red and violets blue?
Aren’t you curious?
The opinions in this article do not necessarily reflect or conflict with those of the DXS editorial team and its contributors.———————————————
Courtney Williams is a scientist, wife, and mother (in no particular order). She works in the oncology department of a biotech company in the burbs of NYC. She blogs about marriage, motherhood, and science at

The path from science to alarmism: How science gets twisted before it gets to you


Today’s post is long. It’s long because it involves the winding path that science can take from ignition to exploding into the public view… and how the twists and turns in that path can result in a skewed representation and understanding of the science. Read the whole thing. It focuses on an example that involves autism–which seems to pop up in skewed representations every day–but certainly this path from science to you, the consumer, happens with scientific information in general. The author is Jess, who blogged this originally at “Don’t Mind the Mess” and graciously gave us permission to reproduce it here. Jess, an attorney with a B.S. in biochemistry, parent of an autistic child and brand new baby, and self-described “Twitter fiend,” tweets as @JessicaEsquire
I am putting my foot down.
As the parent of an autistic child I hear a lot about vaccines and about half a million other things that people think cause autism.
I’m hyperaware of the attention autism gets in the media. So I know about the CDC’s new stats on autism rates. I know about the debate on whether the increase in autism is due to more awareness and diagnosis or more actual occurrences. (Personally, I find the former to be a serious factor, though who’s to say how much.) And I see all the articles that come out week after week about the millions of things that are linked to autism.
There’s a recurring problem here. Valuable research is done. Research is disseminated. Information is reported. Articles are read. Findings are spread. What starts in a lab ends up in a Facebook status. What starts as truth ends up as mistruth in something like a child’s game of telephone. Along the way, piece by piece, truth fades away in favor of headlines and pageviews and gossip.
It’s getting just plain stupid. I’m starting to suspect these articles have nothing to do with serious research but with a search for traffic and hype, an attempt to ride the wave of a trendy topic as concerned parents read every horror story they can find.
A particularly egregious one came up recently. This one doesn’t just cite some random correlation. This one is just plain making things up. The problems here just pile one on top of the other. So let’s consider it piece by piece, a case study in how real research becomes misinformation.

Part One: Research

It starts with scientists. It starts with research. They write up their findings and publish them in a peer-reviewed scientific journal. In this case there are several papers published over a few years about chemicals and their link to brain development. They cover a wide variety of issues and present a wide variety of conclusions. All of them suggest further study.
Maybe they have bad methodology or use statistics incorrectly. Only a few people would ever know the difference. That’s not my concern today. Bad science is one thing, but bad information on good science is another. So let’s assume we have good, solid science in this research.

Part Two: The Conference

Scientists and researchers with similar interests get together and discuss their findings. It’s not that difference from any other conference. There are panels and presentations.

Part Three: The Op-Ed

Next, a group that works on environmental hazards for children publishes a paper. Not a research study but an op-ed in a peer-reviewed journal. In this op-ed they review the conference from Part Two and encourage the study of environmental factors and their relationship to neurodevelopment disorders. Autism is one of many neuro-ish disorders and is mentioned by name in the piece and its title. It’s unclear to me why they zero in on autism. They have a couple vague pieces of evidence that are autism-specific, but the vast majority of what they’re looking at has never been demonstrated to have any kind of relationship to autism, not even a correlation.
Problem #1 is the unnecessary autism name-checking. Problem #2 is much worse, it’s the list of 10 chemicals they suggest for future study. The list itself isn’t a bad idea, I guess. They’re suggesting places for potential research, which certainly needs to be done. But it does reek a little bit of the kind of thing magazines do, you know what I mean, 10 Ways To Get Your Guy All Fired Up! and such. Still, it’s their prerogative.
So let’s examine their evidence for these suggestions. They cite at least one paper for each of these chemicals. I checked them all. The vast majority of them have never shown any connection to Autism (or even ADHD, another diagnosis they name-check). In fact, many of them show that with exposure to these chemicals, the outcome differentials between exposure and non-exposure is 5 IQ points.
FIVE IQ POINTS. Statistically significant? Perhaps. Practically important for a parent? No.
IQ itself is a strange and vague thing. And 5 points isn’t going to move your super-genius down to the level of an average person They’d still be a super-genius. And adding 5 points to someone with severe deficits isn’t going to make them average, either. It’s hard to imagine what difference you’d see between two people whose IQ’s are 5 points apart.
Such statistical differences may well be a sign to warrant further study. And they may be a sign that these chemicals affect neurological development. But it’s getting a bit ahead of ourselves to say they are suspected of being tied to autism. Many of these papers are in areas of research that are just beginning. Many of them involve homogeneous groups (for example, all the participants are Mexican-American migrant workers) which makes issues of genetics and heredity very difficult to account for. Many involve parents self-reporting by filling out surveys rather than having the children examined by professionals.
Let’s be fair. These are the very beginnings of research. You’ll need to do all sorts of rigorous testing and consideration to make real connections. Of course more research is needed. And it’s important that we keep that in mind as we move forward.
(Though, of course, no one else will.)

Part Four: The Press Release

The op-ed is about publicity so it’s the beginning of the problem. But it gets worse. A press release comes out with the list of ten chemicals and already the twisting starts. These are chemicals suggested for further research, but suddenly they’re a ”List of the Top Ten Toxic Chemicals Suspected to Cause Autism and Learning Disabilities.” This, unsurprisingly, is the headline you’ll see all over the internet when news organizations report on the press release. Already it’s turned from suggestions for research into a watchlist.
It gets worse. The press release has this second headline:
The editorial was published alongside four other papers — each suggesting a link between toxic chemicals and autism.
No, actually that’s not at all accurate.
Let’s start with the first paper, which examines the possibility of a connection between maternal smoking and autism. What’s their conclusion?
The primary analyses indicated a slightly inverse association with all ASDs[.]
What does that mean? Among the autistic kids vs. regular kids, there was actually LESS maternal smoking in the autism group. The paper does point out that when it comes to “subgroups,” for instance high-functioning ASD or Asperger’s, there may be a possibly positive relationship. But there are so many caveats I can’t even get to them all. Let’s just take this one:
The ASD subgroup variables were imperfect, relying on the child’s access to evaluation services and the documentation by a myriad of community providers, rather than direct clinical observation.
This means that when they’re saying some groups of ASD kids may have this relationship, they didn’t actually classify these kids. They never saw these kids. They’re relying on data collected by other people. Not even by a consistent set of people. It comes from 11 different states and who knows how many providers. Who’s to say how accurate any of it is. And who’s to say whether these kids are correctly classified at their particular place on the spectrum.
So take all that with a whole jar full of salt and you’re still looking at, overall, no connection with smoking. If anything, the data would indicate smoking has LESS autism rather than more.
After this there are 2 papers on the same chemical. One of them does not contain the word “autism” anywhere. (One of its references has it, but nowhere does it appear in the text of their paper.) The second paper is better. It focuses on the chemical’s effects in particular processes which have been linked to autism. This is very micro-scale science, there are no people involved, just cells and chemicals. It’s important research, but there’s a long stretch between cellular interactions and a person’s diagnosis. It didn’t involve any analysis with autistic individuals. This is certainly the most useful paper of the bunch by a long shot, but it still just sets the stage for further research.
The fourth paper is a review. That means it asserts no new information but summarizes the research on a particular issue, specifically pesticides and autism. Technically I suppose it does assert a link, but none of this is new information.
So I think we’ve pretty much destroyed the headline in that press release. There were not 4 articles suggesting a connection between chemicals and autism.
Is it likely that the writers who take this press release and write articles on it are going to read the papers it cites? Are they going to realize that what they’re saying isn’t actually true? They should. Of course they should. But they don’t.
This list has chemicals suspected of being tied to neurological development. And we should just leave it at that. It’s not that they shouldn’t be studied. They should. But we shouldn’t be throwing out buzzwords like ADHD and Autism when the research doesn’t show any firm data.

Part Five: News Articles

This is a process, though. First research, then op-ed, then press release and finally news articles. So what’s the headline of our news article? “Top 10 Chemicals Most Likely to Cause Autism and Learning Disabilities.” Guilty of serious fearmongering, no? A more accurate title may be: Researchers propose list of chemicals potentially tied to neurological development for further study. But I doubt anyone’s going to write that.
The article itself, to be fair, is full of caveats. The reasons for the increase in autism are “controversial.” There is a “gap in the science.”  But then you get a sentence like this:
But clearly, there is more to the story than simply genetics, as the increases are far too rapid to be of purely genetic origin.
Clearly? Clearly says who? What source says it’s too rapid? The author certainly isn’t a reliable source. She is Robyn O’Brien, a writer for Prevention who posted this article. Her scientific credentials are nonexistent. She is a former financial analyst who now writes about the food industry. She has an MBA, and her undergraduate was in French and Spanish.
Full disclosure: I have a B.S. in Biochemistry, but I feel I’m unqualified to write this article. I’d much rather it be written by someone with a PhD. I’m married to a PhD, which has given me a lot more exposure to science since leaving school, but I fully acknowledge that I shouldn’t be the one doing this. I know how to read a scientific article and examine its conclusions, but I certainly am not someone who can tell you if their methods and analysis are correct.
But I’m talking because there aren’t enough people talking about it. Because the PhD’s aren’t generally science writers. They are scientists. They write about their research in journals, not in the newspaper. And certainly not on a blog for a healthy living magazine.
The author goes on to restate the inaccurate subheadline of the press release verbatim.
In the end she suggests things like buying organic produce, opening your windows and buying BPA-free products.
This is part 5 of our process, but it’s where many of us start. Many of us will only read this article and not the press release or the op-ed or the research papers. Most of us aren’t qualified to do so, all we have is this article. Well, we have that and what other people tell us. Which leads us to our next step.

Part Six: Readers

The article is frustrating, but I can only get so mad. She is saying what the scientists told her to say. She has even included some cautionary language. The problem is that when writing for laymen, you have to be careful.
And with AUTISM? You have to be really careful. Just for you I’m going to venture into the comments to this article to show you how people have responded.
–How about we quit injecting our kids with aluminum, formaldehyde and the rest of the toxic stew that they call vaccines — we bypass every natural defense our bodies have (skin, saliva, stomach acid) to put these things directly in the blood stream.
–Thank you Robyn for always providing sound information to continue guiding our decisions.
–What about heavy metals like Arsenic that are trapped in soils that our “organic” brown rice is growing in to be made into brown rice syrup to sweeten organic foods and baby formula? Not to mention the reports coming in regarding the radiation and contamination from Fukushimi that has reached the west coast an is spreading across this country in the produce and even the pollen…
–Unvaccinated children are some of the healthiest little people on the planet. As far as the Autism link, who really knows but why risk it.
–Thank you for this information. It confirms to me that we should keep doing what we are doing. It also helps me to enforce our no shoes policy in our home. Some people are so disrespectful and just don’t take them off and I hate to sound like a nag and ask even though they already know its what we prefer.
Thankfully there are some people in there who take the writer to task, but how is a reader to trust any one commenter over another? You have no way of knowing from a comment what someone’s experiences or qualifications are.
There’s a reason we need responsible scientific reporting. I’m all for the open dissemination of information, but I’m also aware of what happens when people read something they don’t understand.
autism FB The Whole Truth About Autism
I encountered this FB conversation the other day. Usually I overlook such things but I could not help myself. I jumped in. I tried hard to be polite and present facts. When all that was over, no one was convinced. The response?
autism FB 2 The Whole Truth About Autism
Enough articles on vaccines and people are scared even without evidence. Enough headlines and people don’t bother reading articles. It doesn’t matter how much is retracted or debunked, the damage is done.
We need responsible science reporting. We need responsible reporting, period. I’ve seen plenty of lazy articles on Supreme Court opinions that lead me to read the opinion myself only to realize that they’ve stated the conclusions all wrong.
I don’t want to go on all day, but I do feel like it’s important for us to put our foot down and demand better.
We aren’t all scientists. But we can ask for science writers with the appropriate qualifications. We can ask for links and citations in their articles. (I spent quite some time tracking everything down for this post, and luckily I’m relatively familiar with looking up scientific articles online.) We can ask for articles that show failed connections. It doesn’t all have to be “Autism linked to X” there’s plenty of “Autism not linked to Y” that happens in these studies but you never see that, do you?
As for us laymen, we have to find our own trusted experts. Ask your pediatrician. And if your pediatrician’s not qualified (most of them are MD’s but not PhD’s) ask them if they have a trusted source. Track down specialists in Autism with PhD’s and ask them what they think of the research. Find reliable books and articles and spread them to your friends. We can’t necessarily do a lot, but we can do our part to stop the spread of misinformation and demand better.

These views are the opinion of the author and do not necessarily either reflect or disagree with those of the DXS editorial team.
We also suggest