Hormonal birth control explainer: a matter of health

Politics often interferes where it has no natural business, and one of those places is the discussion among a teenager, her parents, and her doctor or between a woman and her doctor about the best choices for health. The hottest button politics is pushing right now takes the form of a tiny hormone-containing pill known popularly as the birth control pill or, simply, The Pill. This hormonal medication, when taken correctly (same time every day, every day), does indeed prevent pregnancy. But like just about any other medication, this one has multiple uses, the majority of them unrelated to pregnancy prevention.

But let’s start with pregnancy prevention first and get it out of the way. When I used to ask my students how these hormone pills work, they almost invariably answered, “By making your body think it is pregnant.” That’s not correct. We take advantage of our understanding of how our bodies regulate hormones not to mimic pregnancy, exactly, but instead to flatten out what we usually talk about as a hormone cycle. 

The Menstrual Cycle

In a hormonally cycling girl or woman, the brain talks to the ovaries and the ovaries send messages to the uterus and back to the brain. All this chat takes place via chemicals called hormones. In human females, the ovarian hormones are progesterone and estradiol, a type of estrogen, and the brain hormones are luteinizing hormoneand follicle-stimulating hormone. The levels of these four hormones drive what we think of as the menstrual cycle, which exists to prepare an egg for fertilization and to make the uterine lining ready to receive a fertilized egg, should it arrive. 

Fig. 1. Female reproductive anatomy. Credit: Jeanne Garbarino.
In the theoretical 28-day cycle, fertilization (fusion of sperm and egg), if it occurs, will happen about 14 days in, timed with ovulation, or release of the egg from the ovary into the Fallopian tube or oviduct (see video–watch for the tiny egg–and Figure 1). The fertilized egg will immediately start dividing, and a ball of cells (called a blastocyst) that ultimately develops is expected to arrive at the uterus a few days later.
If the ball of cells shows up and implants in the uterine wall, the ovary continues producing progesterone to keep that fluffy, welcoming uterine lining in place. If nothing shows up, the ovaries drop output of estradiol and progesterone so that the uterus releases its lining of cells (which girls and women recognize as their “period”), and the cycle starts all over again.


A typical cycle

The typical cycle (which almost no girl or woman seems to have) begins on day 1 when a girl or woman starts her “period.” This bleeding is the shedding of the uterine lining, a letting go of tissue because the ovaries have bottomed out production of the hormones that keep the tissue intact. During this time, the brain and ovaries are in communication. In the first two weeks of the cycle, called the “follicular phase” (see Figure 2), an ovary has the job of promoting an egg to mature. The egg is protected inside a follicle that spends about 14 days reaching maturity. During this time, the ovary produces estrogen at increasing levels, which causes thickening of the uterine lining, until the estradiol hits a peak about midway through the cycle. This spike sends a hormone signal to the brain, which responds with a hormone spike of its own.

Fig. 2. Top: Day of cycle and phases. Second row: Body temperature (at waking) through cycle.
Third row: Hormones and their levels. Fourth row: What the ovaries are doing.
Fifth row: What the uterus is doing. Via Wikimedia Commons
In the figure, you can see this spike as the red line indicating luteinizing hormone. A smaller spike of follicle-stimulating hormone (blue line), also from the brain, occurs simultaneously. These two hormones along with the estradiol peak result in the follicle expelling the egg from the ovary into the Fallopian tube, or oviduct (Figure 3, step 4). That’s ovulation.
Fun fact: Right when the estrogen spikes, a woman’s body temperature will typically drop a bit (see “Basal body temperature” in the figure), so many women have used temperature monitoring to know that ovulation is happening. Some women also may experience a phenomenon called mittelschmerz, a pain sensation on the side where ovulation is occurring; ovaries trade off follicle duties with each cycle.  

The window of time for a sperm to meet the egg is usually very short, about a day. Meanwhile, as the purple line in the “hormone level” section of Figure 2 shows, the ovary in question immediately begins pumping out progesterone, which maintains that proliferated uterine lining should a ball of dividing cells show up.
Fig. 3. Follicle cycle in the ovary. Steps 1-3, follicular phase, during
which the follicle matures with the egg inside. Step 4: Ovulation, followed by
the luteal phase. Step 5: Corpus luteum (yellow body) releases progesterone.
Step 6: corpus luteum degrades if no implantation in uterus occurs.
Via Wikimedia Commons.
The structure in the ovary responsible for this phase, the luteal phase, is the corpus luteum (“yellow body”; see Figure 3, step 5), which puts out progesterone for a couple of weeks after ovulation to keep the uterine lining in place. If nothing implants, the corpus luteum degenerates (Figure 3, step 6). If implantation takes place, this structure will (should) instead continue producing progesterone through the early weeks of pregnancy to ensure that the lining doesn’t shed.

How do hormones in a pill stop all of this?

The hormones from the brain–luteinizing hormone and follicle-stimulating hormone– spike because the brain gets signals from the ovarian hormones. When a girl or woman takes the pills, which contain synthetics of ovarian hormones, the hormone dose doesn’t peak that way. Instead, the pills expose the girl or woman to a flat daily dose of hormones (synthetic estradiol and synthetic progesterone) or hormone (synthetic progesterone only). Without these peaks (and valleys), the brain doesn’t release the hormones that trigger follicle maturation or ovulation. Without follicle maturation and ovulation, no egg will be present for fertilization.

Assorted hormonal pills. Via Wikimedia Commons.
Most prescriptions of hormone pills are for packets of 28 pills. Typically, seven of these pills–sometimes fewer–are “dummy pills.” During the time a woman takes these dummy pills, her body shows the signs of withdrawal from the hormones, usually as a fairly light bleeding for those days, known as “withdrawal bleeding.” With the lowest-dose pills, the uterine lining may proliferate very little, so that this bleeding can be quite light compared to what a woman might experience under natural hormone influences.

How important are hormonal interventions for birth control?

Every woman has a story to tell, and the stories about the importance of hormonal birth control are legion. My personal story is this: I have three children. With our last son, I had two transient ischemic attacks at the end of the pregnancy, tiny strokes resulting from high blood pressure in the pregnancy. I had to undergo an immediate induction. This was the second time I’d had this condition, called pre-eclampsia, having also had this with our first son. My OB-GYN told me under no uncertain terms that I could not–should not–get pregnant again, as a pregnancy could be life threatening.

But I’m married, happily. As my sister puts it, my husband and I “like each other.” We had to have a failsafe method of ensuring that I wouldn’t become pregnant and endanger my life. For several years, hormonal medication made that possible. After I began having cluster headaches and high blood pressure on this medication in my forties, my OB-GYN and I talked about options, and we ultimately turned to surgery to prevent pregnancy.

But surgery is almost always not reversible. For a younger woman, it’s not the temporary option that hormonal pills provide. Hormonal interventions also are available in other forms, including as a vaginal ring, intrauterine device (some are hormonal), and implants, all reversible.

                                            

One of the most important things a society can do for its own health is to ensure that women in that society have as much control as possible over their reproduction. Thanks to hormonal interventions, although I’ve been capable of childbearing for 30 years, I’ve had only three children in that time. The ability to control my childbearing has meant I’ve been able to focus on being the best woman, mother, friend, and partner I can be, not only for myself and my family, but as a contributor to society, as well.

What are other uses of hormonal interventions?

Heavy, painful, or irregular periods. Did you read that part about how flat hormone inputs can mean less build up of the uterine lining and thus less bleeding and a shorter period? Many girls and women who lack hormonal interventions experience bleeding so heavy that they become anemic. This kind of bleeding can take a girl or woman out of commission for days at a time, in addition to threatening her health. Pain and irregular bleeding also are disabling and negatively affect quality of life on a frequent basis. Taking a single pill each day can make it all better. 


Unfortunately, the current political climate can take this situation–especially for teenage girls–and cast it as a personal moral failing with implications that a girl who takes hormonal medications is a “slut,” rather than the real fact that this hormonal intervention is literally maintaining the regularity of her health.

For some context, imagine that a whenever a boy or man produced sperm, it was painful or caused extensive blood loss that resulted in anemia. Would there be any issues raised with providing a medication that successfully addressed this problem?

Polycystic ovarian syndrome. This syndrome is, at its core, an imbalance of the ovarian hormones that is associated with all kinds of problems, from acne to infertility to overweight to uterine cancer. Guess what balances those hormones back out? Yes. Hormonal medication, otherwise known as The Pill.  

Again, for some context, imagine that this syndrome affected testes instead of ovaries, and caused boys and men to become infertile, experience extreme pain in the testes, gain weight, be at risk for diabetes, and lose their hair. Would there be an issue with providing appropriate hormonal medication to address this problem?

Acne. I had a friend in high school who was on hormonal medication, not because she was sexually active (she was not) but because she struggled for years with acne. This is an FDA-approved use of this medication.

Are there health benefits of hormonal interventions?

In a word, yes. They can protect against certain cancers, including ovarian and endometrial, or uterine, cancer. Women die from these cancers, and this protection is not negligible. They may also help protect against osteoporosis, or bone loss. In cases like mine, they protect against a potentially life-threatening pregnancy.

Speaking of pregnancy, access to contraception is “the only reliable way” to reduce unwanted pregnancies and abortion rates [PDF]. Pregnancy itself is far more threatening to a girl’s (in particular) or woman’s health than hormonal contraception.

Are there health risks with hormonal interventions?

Yes. No medical intervention is without risk. In the case of hormonal interventions, lifestyle habits such as smoking can enhance risk for high blood pressure and blood clots. Age can be a factor, although–as I can attest–women no longer have to stop taking hormonal interventions after age 35 as long as they are nonsmokers and blood pressure is normal. These interventions have been associated with a decrease in some cancers, as I’ve noted, but also with an increase in others, such as liver cancer, over the long term. The effect on breast cancer risk is mixed and may have to do with how long taking the medication delays childbearing. ETA: PLoS Medicine just published a paper (open access) addressing the effects of hormonal interventions on cancer risk.
———————————————————
By Emily Willingham, DXS Managing Editor
Opinions expressed in this piece are my own and do not necessarily reflect the opinions of all DXS editors or contributors.

Biology Explainer: The big 4 building blocks of life–carbohydrates, fats, proteins, and nucleic acids

The short version
  • The four basic categories of molecules for building life are carbohydrates, lipids, proteins, and nucleic acids.
  • Carbohydrates serve many purposes, from energy to structure to chemical communication, as monomers or polymers.
  • Lipids, which are hydrophobic, also have different purposes, including energy storage, structure, and signaling.
  • Proteins, made of amino acids in up to four structural levels, are involved in just about every process of life.                                                                                                      
  • The nucleic acids DNA and RNA consist of four nucleotide building blocks, and each has different purposes.
The longer version
Life is so diverse and unwieldy, it may surprise you to learn that we can break it down into four basic categories of molecules. Possibly even more implausible is the fact that two of these categories of large molecules themselves break down into a surprisingly small number of building blocks. The proteins that make up all of the living things on this planet and ensure their appropriate structure and smooth function consist of only 20 different kinds of building blocks. Nucleic acids, specifically DNA, are even more basic: only four different kinds of molecules provide the materials to build the countless different genetic codes that translate into all the different walking, swimming, crawling, oozing, and/or photosynthesizing organisms that populate the third rock from the Sun.

                                                  

Big Molecules with Small Building Blocks

The functional groups, assembled into building blocks on backbones of carbon atoms, can be bonded together to yield large molecules that we classify into four basic categories. These molecules, in many different permutations, are the basis for the diversity that we see among living things. They can consist of thousands of atoms, but only a handful of different kinds of atoms form them. It’s like building apartment buildings using a small selection of different materials: bricks, mortar, iron, glass, and wood. Arranged in different ways, these few materials can yield a huge variety of structures.

We encountered functional groups and the SPHONC in Chapter 3. These components form the four categories of molecules of life. These Big Four biological molecules are carbohydrates, lipids, proteins, and nucleic acids. They can have many roles, from giving an organism structure to being involved in one of the millions of processes of living. Let’s meet each category individually and discover the basic roles of each in the structure and function of life.
Carbohydrates

You have met carbohydrates before, whether you know it or not. We refer to them casually as “sugars,” molecules made of carbon, hydrogen, and oxygen. A sugar molecule has a carbon backbone, usually five or six carbons in the ones we’ll discuss here, but it can be as few as three. Sugar molecules can link together in pairs or in chains or branching “trees,” either for structure or energy storage.

When you look on a nutrition label, you’ll see reference to “sugars.” That term includes carbohydrates that provide energy, which we get from breaking the chemical bonds in a sugar called glucose. The “sugars” on a nutrition label also include those that give structure to a plant, which we call fiber. Both are important nutrients for people.

Sugars serve many purposes. They give crunch to the cell walls of a plant or the exoskeleton of a beetle and chemical energy to the marathon runner. When attached to other molecules, like proteins or fats, they aid in communication between cells. But before we get any further into their uses, let’s talk structure.

The sugars we encounter most in basic biology have their five or six carbons linked together in a ring. There’s no need to dive deep into organic chemistry, but there are a couple of essential things to know to interpret the standard representations of these molecules.

Check out the sugars depicted in the figure. The top-left molecule, glucose, has six carbons, which have been numbered. The sugar to its right is the same glucose, with all but one “C” removed. The other five carbons are still there but are inferred using the conventions of organic chemistry: Anywhere there is a corner, there’s a carbon unless otherwise indicated. It might be a good exercise for you to add in a “C” over each corner so that you gain a good understanding of this convention. You should end up adding in five carbon symbols; the sixth is already given because that is conventionally included when it occurs outside of the ring.

On the left is a glucose with all of its carbons indicated. They’re also numbered, which is important to understand now for information that comes later. On the right is the same molecule, glucose, without the carbons indicated (except for the sixth one). Wherever there is a corner, there is a carbon, unless otherwise indicated (as with the oxygen). On the bottom left is ribose, the sugar found in RNA. The sugar on the bottom right is deoxyribose. Note that at carbon 2 (*), the ribose and deoxyribose differ by a single oxygen.

The lower left sugar in the figure is a ribose. In this depiction, the carbons, except the one outside of the ring, have not been drawn in, and they are not numbered. This is the standard way sugars are presented in texts. Can you tell how many carbons there are in this sugar? Count the corners and don’t forget the one that’s already indicated!

If you said “five,” you are right. Ribose is a pentose (pent = five) and happens to be the sugar present in ribonucleic acid, or RNA. Think to yourself what the sugar might be in deoxyribonucleic acid, or DNA. If you thought, deoxyribose, you’d be right.

The fourth sugar given in the figure is a deoxyribose. In organic chemistry, it’s not enough to know that corners indicate carbons. Each carbon also has a specific number, which becomes important in discussions of nucleic acids. Luckily, we get to keep our carbon counting pretty simple in basic biology. To count carbons, you start with the carbon to the right of the non-carbon corner of the molecule. The deoxyribose or ribose always looks to me like a little cupcake with a cherry on top. The “cherry” is an oxygen. To the right of that oxygen, we start counting carbons, so that corner to the right of the “cherry” is the first carbon. Now, keep counting. Here’s a little test: What is hanging down from carbon 2 of the deoxyribose?

If you said a hydrogen (H), you are right! Now, compare the deoxyribose to the ribose. Do you see the difference in what hangs off of the carbon 2 of each sugar? You’ll see that the carbon 2 of ribose has an –OH, rather than an H. The reason the deoxyribose is called that is because the O on the second carbon of the ribose has been removed, leaving a “deoxyed” ribose. This tiny distinction between the sugars used in DNA and RNA is significant enough in biology that we use it to distinguish the two nucleic acids.

In fact, these subtle differences in sugars mean big differences for many biological molecules. Below, you’ll find a couple of ways that apparently small changes in a sugar molecule can mean big changes in what it does. These little changes make the difference between a delicious sugar cookie and the crunchy exoskeleton of a dung beetle.

Sugar and Fuel

A marathon runner keeps fuel on hand in the form of “carbs,” or sugars. These fuels provide the marathoner’s straining body with the energy it needs to keep the muscles pumping. When we take in sugar like this, it often comes in the form of glucose molecules attached together in a polymer called starch. We are especially equipped to start breaking off individual glucose molecules the minute we start chewing on a starch.

Double X Extra: A monomer is a building block (mono = one) and a polymer is a chain of monomers. With a few dozen monomers or building blocks, we get millions of different polymers. That may sound nutty until you think of the infinity of values that can be built using only the numbers 0 through 9 as building blocks or the intricate programming that is done using only a binary code of zeros and ones in different combinations.

Our bodies then can rapidly take the single molecules, or monomers, into cells and crack open the chemical bonds to transform the energy for use. The bonds of a sugar are packed with chemical energy that we capture to build a different kind of energy-containing molecule that our muscles access easily. Most species rely on this process of capturing energy from sugars and transforming it for specific purposes.

Polysaccharides: Fuel and Form

Plants use the Sun’s energy to make their own glucose, and starch is actually a plant’s way of storing up that sugar. Potatoes, for example, are quite good at packing away tons of glucose molecules and are known to dieticians as a “starchy” vegetable. The glucose molecules in starch are packed fairly closely together. A string of sugar molecules bonded together through dehydration synthesis, as they are in starch, is a polymer called a polysaccharide (poly = many; saccharide = sugar). When the monomers of the polysaccharide are released, as when our bodies break them up, the reaction that releases them is called hydrolysis.

Double X Extra: The specific reaction that hooks one monomer to another in a covalent bond is called dehydration synthesis because in making the bond–synthesizing the larger molecule–a molecule of water is removed (dehydration). The reverse is hydrolysis (hydro = water; lysis = breaking), which breaks the covalent bond by the addition of a molecule of water.

Although plants make their own glucose and animals acquire it by eating the plants, animals can also package away the glucose they eat for later use. Animals, including humans, store glucose in a polysaccharide called glycogen, which is more branched than starch. In us, we build this energy reserve primarily in the liver and access it when our glucose levels drop.

Whether starch or glycogen, the glucose molecules that are stored are bonded together so that all of the molecules are oriented the same way. If you view the sixth carbon of the glucose to be a “carbon flag,” you’ll see in the figure that all of the glucose molecules in starch are oriented with their carbon flags on the upper left.

The orientation of monomers of glucose in polysaccharides can make a big difference in the use of the polymer. The glucoses in the molecule on the top are all oriented “up” and form starch. The glucoses in the molecule on the bottom alternate orientation to form cellulose, which is quite different in its function from starch.

Storing up sugars for fuel and using them as fuel isn’t the end of the uses of sugar. In fact, sugars serve as structural molecules in a huge variety of organisms, including fungi, bacteria, plants, and insects.

The primary structural role of a sugar is as a component of the cell wall, giving the organism support against gravity. In plants, the familiar old glucose molecule serves as one building block of the plant cell wall, but with a catch: The molecules are oriented in an alternating up-down fashion. The resulting structural sugar is called cellulose.

That simple difference in orientation means the difference between a polysaccharide as fuel for us and a polysaccharide as structure. Insects take it step further with the polysaccharide that makes up their exoskeleton, or outer shell. Once again, the building block is glucose, arranged as it is in cellulose, in an alternating conformation. But in insects, each glucose has a little extra added on, a chemical group called an N-acetyl group. This addition of a single functional group alters the use of cellulose and turns it into a structural molecule that gives bugs that special crunchy sound when you accidentally…ahem…step on them.

These variations on the simple theme of a basic carbon-ring-as-building-block occur again and again in biological systems. In addition to serving roles in structure and as fuel, sugars also play a role in function. The attachment of subtly different sugar molecules to a protein or a lipid is one way cells communicate chemically with one another in refined, regulated interactions. It’s as though the cells talk with each other using a specialized, sugar-based vocabulary. Typically, cells display these sugary messages to the outside world, making them available to other cells that can recognize the molecular language.

Lipids: The Fatty Trifecta

Starch makes for good, accessible fuel, something that we immediately attack chemically and break up for quick energy. But fats are energy that we are supposed to bank away for a good long time and break out in times of deprivation. Like sugars, fats serve several purposes, including as a dense source of energy and as a universal structural component of cell membranes everywhere.

Fats: the Good, the Bad, the Neutral

Turn again to a nutrition label, and you’ll see a few references to fats, also known as lipids. (Fats are slightly less confusing that sugars in that they have only two names.) The label may break down fats into categories, including trans fats, saturated fats, unsaturated fats, and cholesterol. You may have learned that trans fats are “bad” and that there is good cholesterol and bad cholesterol, but what does it all mean?

Let’s start with what we mean when we say saturated fat. The question is, saturated with what? There is a specific kind of dietary fat call the triglyceride. As its name implies, it has a structural motif in which something is repeated three times. That something is a chain of carbons and hydrogens, hanging off in triplicate from a head made of glycerol, as the figure shows.  Those three carbon-hydrogen chains, or fatty acids, are the “tri” in a triglyceride. Chains like this can be many carbons long.

Double X Extra: We call a fatty acid a fatty acid because it’s got a carboxylic acid attached to a fatty tail. A triglyceride consists of three of these fatty acids attached to a molecule called glycerol. Our dietary fat primarily consists of these triglycerides.

Triglycerides come in several forms. You may recall that carbon can form several different kinds of bonds, including single bonds, as with hydrogen, and double bonds, as with itself. A chain of carbon and hydrogens can have every single available carbon bond taken by a hydrogen in single covalent bond. This scenario of hydrogen saturation yields a saturated fat. The fat is saturated to its fullest with every covalent bond taken by hydrogens single bonded to the carbons.

Saturated fats have predictable characteristics. They lie flat easily and stick to each other, meaning that at room temperature, they form a dense solid. You will realize this if you find a little bit of fat on you to pinch. Does it feel pretty solid? That’s because animal fat is saturated fat. The fat on a steak is also solid at room temperature, and in fact, it takes a pretty high heat to loosen it up enough to become liquid. Animals are not the only organisms that produce saturated fat–avocados and coconuts also are known for their saturated fat content.

The top graphic above depicts a triglyceride with the glycerol, acid, and three hydrocarbon tails. The tails of this saturated fat, with every possible hydrogen space occupied, lie comparatively flat on one another, and this kind of fat is solid at room temperature. The fat on the bottom, however, is unsaturated, with bends or kinks wherever two carbons have double bonded, booting a couple of hydrogens and making this fat unsaturated, or lacking some hydrogens. Because of the space between the bumps, this fat is probably not solid at room temperature, but liquid.

You can probably now guess what an unsaturated fat is–one that has one or more hydrogens missing. Instead of single bonding with hydrogens at every available space, two or more carbons in an unsaturated fat chain will form a double bond with carbon, leaving no space for a hydrogen. Because some carbons in the chain share two pairs of electrons, they physically draw closer to one another than they do in a single bond. This tighter bonding result in a “kink” in the fatty acid chain.

In a fat with these kinks, the three fatty acids don’t lie as densely packed with each other as they do in a saturated fat. The kinks leave spaces between them. Thus, unsaturated fats are less dense than saturated fats and often will be liquid at room temperature. A good example of a liquid unsaturated fat at room temperature is canola oil.

A few decades ago, food scientists discovered that unsaturated fats could be resaturated or hydrogenated to behave more like saturated fats and have a longer shelf life. The process of hydrogenation–adding in hydrogens–yields trans fat. This kind of processed fat is now frowned upon and is being removed from many foods because of its associations with adverse health effects. If you check a food label and it lists among the ingredients “partially hydrogenated” oils, that can mean that the food contains trans fat.

Double X Extra: A triglyceride can have up to three different fatty acids attached to it. Canola oil, for example, consists primarily of oleic acid, linoleic acid, and linolenic acid, all of which are unsaturated fatty acids with 18 carbons in their chains.

Why do we take in fat anyway? Fat is a necessary nutrient for everything from our nervous systems to our circulatory health. It also, under appropriate conditions, is an excellent way to store up densely packaged energy for the times when stores are running low. We really can’t live very well without it.

Phospholipids: An Abundant Fat

You may have heard that oil and water don’t mix, and indeed, it is something you can observe for yourself. Drop a pat of butter–pure saturated fat–into a bowl of water and watch it just sit there. Even if you try mixing it with a spoon, it will just sit there. Now, drop a spoon of salt into the water and stir it a bit. The salt seems to vanish. You’ve just illustrated the difference between a water-fearing (hydrophobic) and a water-loving (hydrophilic) substance.

Generally speaking, compounds that have an unequal sharing of electrons (like ions or anything with a covalent bond between oxygen and hydrogen or nitrogen and hydrogen) will be hydrophilic. The reason is that a charge or an unequal electron sharing gives the molecule polarity that allows it to interact with water through hydrogen bonds. A fat, however, consists largely of hydrogen and carbon in those long chains. Carbon and hydrogen have roughly equivalent electronegativities, and their electron-sharing relationship is relatively nonpolar. Fat, lacking in polarity, doesn’t interact with water. As the butter demonstrated, it just sits there.

There is one exception to that little maxim about fat and water, and that exception is the phospholipid. This lipid has a special structure that makes it just right for the job it does: forming the membranes of cells. A phospholipid consists of a polar phosphate head–P and O don’t share equally–and a couple of nonpolar hydrocarbon tails, as the figure shows. If you look at the figure, you’ll see that one of the two tails has a little kick in it, thanks to a double bond between the two carbons there.

Phospholipids form a double layer and are the major structural components of cell membranes. Their bend, or kick, in one of the hydrocarbon tails helps ensure fluidity of the cell membrane. The molecules are bipolar, with hydrophilic heads for interacting with the internal and external watery environments of the cell and hydrophobic tails that help cell membranes behave as general security guards.

The kick and the bipolar (hydrophobic and hydrophilic) nature of the phospholipid make it the perfect molecule for building a cell membrane. A cell needs a watery outside to survive. It also needs a watery inside to survive. Thus, it must face the inside and outside worlds with something that interacts well with water. But it also must protect itself against unwanted intruders, providing a barrier that keeps unwanted things out and keeps necessary molecules in.

Phospholipids achieve it all. They assemble into a double layer around a cell but orient to allow interaction with the watery external and internal environments. On the layer facing the inside of the cell, the phospholipids orient their polar, hydrophilic heads to the watery inner environment and their tails away from it. On the layer to the outside of the cell, they do the same.
As the figure shows, the result is a double layer of phospholipids with each layer facing a polar, hydrophilic head to the watery environments. The tails of each layer face one another. They form a hydrophobic, fatty moat around a cell that serves as a general gatekeeper, much in the way that your skin does for you. Charged particles cannot simply slip across this fatty moat because they can’t interact with it. And to keep the fat fluid, one tail of each phospholipid has that little kick, giving the cell membrane a fluid, liquidy flow and keeping it from being solid and unforgiving at temperatures in which cells thrive.

Steroids: Here to Pump You Up?

Our final molecule in the lipid fatty trifecta is cholesterol. As you may have heard, there are a few different kinds of cholesterol, some of which we consider to be “good” and some of which is “bad.” The good cholesterol, high-density lipoprotein, or HDL, in part helps us out because it removes the bad cholesterol, low-density lipoprotein or LDL, from our blood. The presence of LDL is associated with inflammation of the lining of the blood vessels, which can lead to a variety of health problems.

But cholesterol has some other reasons for existing. One of its roles is in the maintenance of cell membrane fluidity. Cholesterol is inserted throughout the lipid bilayer and serves as a block to the fatty tails that might otherwise stick together and become a bit too solid.

Cholesterol’s other starring role as a lipid is as the starting molecule for a class of hormones we called steroids or steroid hormones. With a few snips here and additions there, cholesterol can be changed into the steroid hormones progesterone, testosterone, or estrogen. These molecules look quite similar, but they play very different roles in organisms. Testosterone, for example, generally masculinizes vertebrates (animals with backbones), while progesterone and estrogen play a role in regulating the ovulatory cycle.

Double X Extra: A hormone is a blood-borne signaling molecule. It can be lipid based, like testosterone, or short protein, like insulin.

Proteins

As you progress through learning biology, one thing will become more and more clear: Most cells function primarily as protein factories. It may surprise you to learn that proteins, which we often talk about in terms of food intake, are the fundamental molecule of many of life’s processes. Enzymes, for example, form a single broad category of proteins, but there are millions of them, each one governing a small step in the molecular pathways that are required for living.

Levels of Structure

Amino acids are the building blocks of proteins. A few amino acids strung together is called a peptide, while many many peptides linked together form a polypeptide. When many amino acids strung together interact with each other to form a properly folded molecule, we call that molecule a protein.

For a string of amino acids to ultimately fold up into an active protein, they must first be assembled in the correct order. The code for their assembly lies in the DNA, but once that code has been read and the amino acid chain built, we call that simple, unfolded chain the primary structure of the protein.

This chain can consist of hundreds of amino acids that interact all along the sequence. Some amino acids are hydrophobic and some are hydrophilic. In this context, like interacts best with like, so the hydrophobic amino acids will interact with one another, and the hydrophilic amino acids will interact together. As these contacts occur along the string of molecules, different conformations will arise in different parts of the chain. We call these different conformations along the amino acid chain the protein’s secondary structure.

Once those interactions have occurred, the protein can fold into its final, or tertiary structure and be ready to serve as an active participant in cellular processes. To achieve the tertiary structure, the amino acid chain’s secondary interactions must usually be ongoing, and the pH, temperature, and salt balance must be just right to facilitate the folding. This tertiary folding takes place through interactions of the secondary structures along the different parts of the amino acid chain.

The final product is a properly folded protein. If we could see it with the naked eye, it might look a lot like a wadded up string of pearls, but that “wadded up” look is misleading. Protein folding is a carefully regulated process that is determined at its core by the amino acids in the chain: their hydrophobicity and hydrophilicity and how they interact together.

In many instances, however, a complete protein consists of more than one amino acid chain, and the complete protein has two or more interacting strings of amino acids. A good example is hemoglobin in red blood cells. Its job is to grab oxygen and deliver it to the body’s tissues. A complete hemoglobin protein consists of four separate amino acid chains all properly folded into their tertiary structures and interacting as a single unit. In cases like this involving two or more interacting amino acid chains, we say that the final protein has a quaternary structure. Some proteins can consist of as many as a dozen interacting chains, behaving as a single protein unit.

A Plethora of Purposes

What does a protein do? Let us count the ways. Really, that’s almost impossible because proteins do just about everything. Some of them tag things. Some of them destroy things. Some of them protect. Some mark cells as “self.” Some serve as structural materials, while others are highways or motors. They aid in communication, they operate as signaling molecules, they transfer molecules and cut them up, they interact with each other in complex, interrelated pathways to build things up and break things down. They regulate genes and package DNA, and they regulate and package each other.

As described above, proteins are the final folded arrangement of a string of amino acids. One way we obtain these building blocks for the millions of proteins our bodies make is through our diet. You may hear about foods that are high in protein or people eating high-protein diets to build muscle. When we take in those proteins, we can break them apart and use the amino acids that make them up to build proteins of our own.

Nucleic Acids

How does a cell know which proteins to make? It has a code for building them, one that is especially guarded in a cellular vault in our cells called the nucleus. This code is deoxyribonucleic acid, or DNA. The cell makes a copy of this code and send it out to specialized structures that read it and build proteins based on what they read. As with any code, a typo–a mutation–can result in a message that doesn’t make as much sense. When the code gets changed, sometimes, the protein that the cell builds using that code will be changed, too.

Biohazard!The names associated with nucleic acids can be confusing because they all start with nucle-. It may seem obvious or easy now, but a brain freeze on a test could mix you up. You need to fix in your mind that the shorter term (10 letters, four syllables), nucleotide, refers to the smaller molecule, the three-part building block. The longer term (12 characters, including the space, and five syllables), nucleic acid, which is inherent in the names DNA and RNA, designates the big, long molecule.

DNA vs. RNA: A Matter of Structure

DNA and its nucleic acid cousin, ribonucleic acid, or RNA, are both made of the same kinds of building blocks. These building blocks are called nucleotides. Each nucleotide consists of three parts: a sugar (ribose for RNA and deoxyribose for DNA), a phosphate, and a nitrogenous base. In DNA, every nucleotide has identical sugars and phosphates, and in RNA, the sugar and phosphate are also the same for every nucleotide.

So what’s different? The nitrogenous bases. DNA has a set of four to use as its coding alphabet. These are the purines, adenine and guanine, and the pyrimidines, thymine and cytosine. The nucleotides are abbreviated by their initial letters as A, G, T, and C. From variations in the arrangement and number of these four molecules, all of the diversity of life arises. Just four different types of the nucleotide building blocks, and we have you, bacteria, wombats, and blue whales.

RNA is also basic at its core, consisting of only four different nucleotides. In fact, it uses three of the same nitrogenous bases as DNA–A, G, and C–but it substitutes a base called uracil (U) where DNA uses thymine. Uracil is a pyrimidine.

DNA vs. RNA: Function Wars

An interesting thing about the nitrogenous bases of the nucleotides is that they pair with each other, using hydrogen bonds, in a predictable way. An adenine will almost always bond with a thymine in DNA or a uracil in RNA, and cytosine and guanine will almost always bond with each other. This pairing capacity allows the cell to use a sequence of DNA and build either a new DNA sequence, using the old one as a template, or build an RNA sequence to make a copy of the DNA.

These two different uses of A-T/U and C-G base pairing serve two different purposes. DNA is copied into DNA usually when a cell is preparing to divide and needs two complete sets of DNA for the new cells. DNA is copied into RNA when the cell needs to send the code out of the vault so proteins can be built. The DNA stays safely where it belongs.

RNA is really a nucleic acid jack-of-all-trades. It not only serves as the copy of the DNA but also is the main component of the two types of cellular workers that read that copy and build proteins from it. At one point in this process, the three types of RNA come together in protein assembly to make sure the job is done right.


 By Emily Willingham, DXS managing editor 
This material originally appeared in similar form in Emily Willingham’s Complete Idiot’s Guide to College Biology

The sperm don’t care how they got there, Rep. Akin

17 c. rendition of human inside sperm.
Public domain in US.
[Trigger warning: frank language about sexual assault]
By Emily Willingham
By now, you’ve probably heard the phrase: legitimate rape. As oxymoronic and moronic as it seems, a Missouri congressman and member of the House Science, Space, and Technology committee used this term to argue that women who experience “legitimate rape” likely can’t become pregnant because their bodies “shut that whole thing down.”
If his words and ideas sound archaic, it’s because they are. Welcome to the 13th century, Congressman Todd Akin. It’s possible that this idea that a woman couldn’t become pregnant because of rape arose around that time, at least as part of the UK legal code. People once thought that a woman couldn’t conceive unless she enjoyed herself during the conception–i.e., had an orgasm–so if a rape resulted in pregnancy, the woman must somehow have been having a good time. Ergo, ’twas not a rape. This Guardian piece expands on that history but doesn’t get into why such a concept lingers into the 21st century. A lot of that lingering has to do with a strong desire on the part of some in US political circles to make a rape-related pregnancy the woman’s fault so that she must suffer the consequences. Those consequences, of course, are to be denied abortion access, to carry a pregnancy to term, and to bring a child of rape into the world.
This idea that pregnancy could determine whether or not a rape occurred was still alive and kicking in 20th century US politics, so Akin’s comments, as remarkably magic-based and unscientific as they are, are still not that shocking to some groups. In 1995, another Republican member of the House, Henry Aldridge, made a very similar observation, saying that women can’t get pregnant from rape because “the juices don’t flow, the body functions don’t work.” A year after Aldridge made those comments, a paper published in a US gynecology journal reported that pregnancies from rape occur “with significant frequency.” That frequency at the time was an estimated 32,101 pregnancies resulting from rape in a single year. In other words, the “body functions” did work, and “that whole thing” did not shut down in 32,000 cases in one year alone.
Consider that current estimates are that 1 out of every 6 women in the United States will be a victim of completed or attempted rape in her lifetime and that by the close of the 20th century, almost 18 million women were walking around having experienced either an attempted or a completed rape. The standard expectation for pregnancy rates, whether from an act of violence (rape) or mutually agreed, unprotected intercourse, is about 5%.
In his comments, Akin used the phrase “legitimate rape.” He joins with his colleague of 17 years ago in ignorance about human reproduction. But he also joins legions of people with a history stretching back hundreds of years, people who blamed women for everything having to do with sex and human reproduction. In the medieval world, if a woman bore a daughter and not a son, that was her fault. If she made a man so hot blooded that he forced himself on her, that was her fault for being so attractive, not his for being a rapist. In Akin’s world, in Aldridge’s world, a woman doesn’t need abortion access or a morning after pill to prevent a pregnancy following rape because the determinant of whether or not the rape was “legitimate” is whether or not she becomes pregnant. And the woman, you see, in the Akin/Aldridge cosmos, can “shut that whole thing down” and keep “bodily functions” from working if the rape was, you know, a real, legit-type rape.
In addition to quick primer on human reproduction, I’m offering here a couple of quick points about rape.
Rape is usually an act of violence or power. It is not just an act of sex. It uses sex as a weapon, as though it were a gun or a billy club. It is an act of violence or power against another person without that person’s consent. Nine out of ten rape victims are female. There is not a category of “not legitimate” rape. Sexual violence inflicted without consent is rape. Period.
The thing is, sperm don’t care how they get inside a vagina. They may arrive by turkey baster, catheter, penile delivery, or other creative mechanisms. Any rancher involved in livestock reproduction can tell you that violating a mammal with an object that delivers sperm is no obstacle to impregnating said mammal, no matter how stressed or unwilling the mammal may be.
Akin and Aldridge aren’t the first politicians to manifest a sad lack of understanding of the female body and of human reproduction. Mitt Romney himself has provoked a few howls thanks to his ignorance about birth control, leading Rachel Maddow to offer up a primer on female anatomy for the fellas out there. 
Here’s my own quick primer. About the female: The human female takes some time producing a ready egg for fertilization. That time is often quoted as 28 days, but it varies quite a bit. When the egg is ready, it leaves the ovary and begins a journey down the fallopian tube (also called the oviduct) to the uterus. During its brief sojourn in the fallopian tube, if the egg encounters sperm, fertilization likely will take place. If the egg shows up in the fallopian tube and sperm are already there, hanging out, fertilization is also a strong possibility. In other words, if the egg is around at the same time as the sperm, regardless of how the sperm got there, fertilization can–and often will–happen. The fertilized egg will then continue the journey to the uterus, where implantation into the wall of the uterus happens. Again, if a fertilized egg shows up, the uterine wall doesn’t care how it got fertilized in the first place.
Now to the human male. With ejaculation, a man releases between 40 and 150 million sperm. If ejaculated into the vagina, these sperm immediately begin their short lifetime journey toward the fallopian tube. Some can arrive there in as little as 30 minutes. A woman who has been raped could well already be carrying a fertilized egg by the time authorities begin taking her report. Sperm can live up to three days, at least, possibly as long as five days, hanging out around the fallopian tube. So if an egg isn’t there at the time a rape occurs, if the woman releases one in the days following, she can still become pregnant. Again, the fallopian tubes and ovaries do not care how the sperm got there, legitimately or otherwise.
Although Akin talks about “legitimate rape,” what he and Aldridge and so many other men truly are seeking to do is a twofold burdening of women for having the temerity to experience and report rape. If a woman becomes pregnant because of a rape, you see, then it was not rape. Point one. Point two, because of point one, a woman who reports a rape but becomes pregnant was really engaged in a willing sexual act and therefore must bear–literally–the consequences and, yes, punishment of engaging in that act. She must carry a pregnancy to term. She cannot have access to morning after pills or abortion to prevent or end a rape-related pregnancy because if she’s pregnant, it wasn’t rape, and if she’s pregnant, well, that’s totally her fault for not having her body “stop juices” and “shut that whole thing down.” Got that?
Get this: If you’re a woman who has just been raped, among the many other considerations you deserve, you deserve a morning after pill as part of your rape treatment, if you so desire. Because the hormones in the pills can prevent the impending release of an egg, among other things, create an inhospitable uterine environment for pregnancy, this series of pills can block the implantation of a fertilized egg in the uterine wall** they can save you the added pain, burden, and anguish of a pregnancy resulting from a rape. That, Srs. Akin and Aldridge, is the only established way to “shut that whole thing down,” and it’s a right that every single woman should have.

**A commenter has alerted us (thank you!) to information that came out in June regarding FDA claims about implantation prevention with the morning after pill, which may not be accurate. More on that here and here (NYT). Planned Parenthood cites the IUD as a form of emergency contraception that presumably would prevent implantation. 
These views are the opinion of the author and do not necessarily reflect or disagree with those of the DXS editorial team.

Related links worth reading (updated 8/21/12)

  • io9 breaks down more of the data about rapes and pregnancies, including information about why mammals don’t tend to engage in sperm selection
  • David Kroll notes the problem with having Akin on the House sci and tech committee
  • At the New Statesman, what people really mean when they talk about “legitimate rape”
  • Jezebel’s guide to “legitimate rape”
  • Kate Clancy puts rape stats in context and discusses why pre-eclampsia is not a mechanism for “shutting that whole thing down”
  • Melanie Tannenbaum lays it out and talks about the “Just-world fallacy” that drives thinking like Akin’s 

 

DXS Op-Ed: How birth control can save the world


By DXS Biology Editor Jeanne Garbarino


Over the last few months, the concept of birth control has been under great scrutiny in the American eye.  Many politicians have been discussing it’s “moral” implications, and whether institutions or organizations should have the right to deny insurance coverage for hormonal contraception if it does not fall within the confines of their belief systems.  And while American women have narrowly escaped legislation that would impede their reproductive health and freedom, politicians, mostly men, feel it necessary to make misinformed or even completely false statements about birth control. 

For some strange reason, there is this erroneous idea that birth control is not a matter of health, but rather a means by which a woman can engage in careless and frequent sexual activity, with a man, and without the consequences of pregnancy.  It’s clear that the picture these politicians are trying to paint is that of debauchery and immorality, which, of course, is a departure from the puritanical integrity they embody.  But, rather than focus on this utter nonsense, I would prefer to highlight the significant impact birth control will have on the future of our civilization and our planet.

The human population has grown steadily since the beginning of our species.  However, the rate of growth began to skyrocket after the industrial revolution, and our population has actually doubled over the last 50 years, reaching 7 the billion mark in March of this year.  This is an astounding statistic since it took until 1804 – around 50,000 years – to reach our first billion. 

World Population: 1800 – 2100 (Wikimedia Commons)

What makes these numbers really scary is the concept of carrying capacity, which is an ecological term used to describe the maximum number of individual members of a species that a certain habitat can support.  In this case, the species is human and that certain habitat is planet earth. 

Here’s the thing: the availability of our resources will not match the rate of population growth.  Given our current technologies, there is only so much food we can grow, only so much water we can drink, only so much space we can inhabit, only so much waste we can safely rid, only so much energy we can harness.  There will be a point that the human population will hit its carrying capacity on earth, and when it does, the chances of widespread famine will be great, and the delineation between the developing world and the developed world will be no longer.  

Given this very serious issue, Britain’s Royal Society has recently convened to discuss the future of the human population and on April 26th, 2012, and published their findings in the People and the Planet Report [PDF].  For me, key findingnumber three struck a cord:

Reproductive health and voluntary family planning programmes urgently require political leadership and financial commitment, both nationally and internationally. This is needed to continue the downward trajectory of fertility rates, especially in countries where the unmet need for contraception is high. (emphasis theirs)

Political leadership and financial commitment – Did you see that, American politicians??  For those of you who are unnecessarily waging war on women’s reproductive rights, its time to get your giant heads out of your collective asses and realize the implications of legislation that would go against ensuring both the continued success of our species and the health of our planet.  It is time to stop spending money on these regressive and oppressive campaigns guised under the false pretense of “religious freedom” and start making a financial commitment to the women (and by association, men) who live in our nation.

To drive this point even further, here is another excerpt from the People and the Planet Report (my favorite bit, found in Box 2.5 on page 33):

Women bear the main physical burden of reproduction: pregnancy, breastfeeding and childcare. They also bear the main responsibility for contraception as most methods are designed for their use. Men, it may be argued, reap the benefits of children without incurring an equal share of the cost. It follows that women may be more favourable to the idea of small families and family planning than their partners but unable to express their inclinations in male-dominated systems. Such views received international endorsement in the Program of Action resulting from the UN conference on population in 1994. Paragraph 4.1 states that “improving the status of women is essential for the long-term success of population programs”.

We currently live in a nation where 99% of women who are of reproductive age have used some form of birth control at least once.  And when it comes to hormonal contraception, over 80% of sexually active women aged 15-44 have relied on “the pill” as a means to prevent unwanted pregnancies.  This has contributed to an average of two births per American woman, which is considered to be the replacement rate for a population.  Compare this number to countries where birth control and reproductive education is scarce – countries like Niger (7.52 births per woman) or Afghanistan (5.64 births per woman) – and one can see the impact of family planning through contraception.  Furthermore, it has been well documented that women in developed worlds who are provided with the means to control their fertility are more empowered and their families are healthier.   

While our situation in the US is significantly better compared to underdeveloped nations where rape and the cultural devaluing of women is commonplace, we still have a responsibility to uphold – a responsibility that would undoubtedly increase the quality of life for women (and men), as well as contribute to the overall health of the human population.  Why would we want to go backwards and remove the ability of a woman to decide when, if ever, she would like to reproduce? 

Having access to birth control empowers women and allows them to make greater contributions to society.  And because contraception is primarily the responsibility of a woman, our society needs to ensure that birth control, reproductive education, and family planning resources are readily available to EVERYONE.

The United Nations predicts that the ten-billionth person will be born around 2050.  Will we continue to fight this ridiculous fight against women’s rights or will we redirect our collective energy to developing technologies that will help our species and planet better cope with the increasing demands associated with a steadily rising population?  Let’s stop allowing stupidity to prevail and let’s start doing the right thing: making sure that birth control is readily available to any woman who wishes to use it.  Because, now more than ever, it is clear that birth control will save the world.   


Note: In my readings for this article, I came across a wonderful resource for anyone interested in learning more about human fertility and population growth.  Through the wonders of the internet, Academic Earth is offering a free (!) online course called Global Population Growth, given by Yale University professor Robert Wyman. 


These views are the opinion of the author and do not necessarily either reflect or disagree with those of the DXS editorial team.

#DispatchesDNLee: Handling lady-business in the field

An African-American woman and scientist in Tanzania

by Danielle Lee, Ph.D.

Actual field diary entry, Tuesday, August 7, 2012, ~8:30 am

I cried this morning. In the shower. I was trying (poorly) to suppress screams of pain as I let the water run on my leg. I knew it was going to be bad when I saw blood on my pants as I pulled my field cover pants off. 

I had been running into the same bush on line 3 between traps C and D every day. It has scraped me good, but this time it really hurt. I fell down and screamed in pain. Shabani* was breaking across the field to come to see about me. It really was of no use. He couldn’t help me. I just needed a minute or two to recover. I soon walked it off.

But in that moment standing in the shower, I let out a yelp. I tried to hold my scraped leg under the hot water to clean the wound. But it stung like the devil.

Lee_Legs_2057I cried, much like I did as little girl. I looked down at my scarred legs and immediately recollected the summer of 1981. I was such a tomboy, playing in the yard and in the streets with my boy cousins, and clumsy, so clumsy. My legs and arms were covered in bandages like tattoos. This obviously frustrated my bio-dad to no end. I vividly remember him threatening to spank me if I got another scratch on my legs. He scolded that I was a girl and I had no business being scarred up like that. I was shook. I tried to play more girl-like and carefully, but it was of no use. I liked climbing trees and tussling too much to stop. So I resorted to hiding my scars from him.

But as I looked at my abused legs, I couldn’t help but think how ‘unlady-like’ my stems were. What boy is going like me with my legs looking like that or with feet badly needing a pedicure?

And it makes me wonder, Do male researchers ever have conversations like these with themselves or with each other? Unlike our male counterparts, female researchers or long-term travelers and hikers have a few extra hygiene and grooming regimes to consider.

What about that time of the month?

How do I keep a happy lady garden in the middle of the bush?

Do I or don’t I shave my legs?

First, the monthly menses

Dealing with the logistics of menses is always an inconvenience to me. My previous field research experiences taught me that tampons are the most wonderful invention, ever! They are especially handy if you have a heavier flow or will be busy for long periods of time in the field. Wear a pad for backup so as not to soil and permanently stain your good field pants. However, the last time I was in a developing nation doing field ecology, I said if I could halt my period for the time I was there, then I would certainly do it. I was able to do just that: I had a hysterectomy 3 years ago(yay for me), but am sorry I can’t offer more first-hand advice for managing menses to younger researchers. [Ed. note: Some birth control pill formulations promise to limit bleeding to four times a year.]

I did make note that you can get feminine products in Tanzania, primarily sanitary napkins. They come in small-quantity packages, and there are not many varieties. It’s like the options that were available in 1980. If you have a preference for certain products, e.g., dry-weave, wings, long/short, light/super-absorbent variety pack, then I recommend bringing your own.

Second, maintaining your lady-garden

Since said hysterectomy, I have become more sensitive to microflora imbalance. It didn’t occur to me to be prepared for yeast infections. I eventually asked one of the other U.S female researchers if she had suffered from yeast infections since living in Tanzania. She told me that she had but that she was prepared. Her doctor pre-prescribed vaginal antifungals to take with her on her trip. I was not warned, but it occurred to me that if I was drinking bottled water because of the risks of local water disrupting my GI tract, then maybe my private parts would be sensitive as well. I began washing my sensitive areas with bottled water and noticed an immediate improvement. I also began taking acidophilus pills to get my system on track.

But let’s not underestimate the importance of your clothes and underwear-cleaning regime. You may discover you are allergic to the washing powder sold and used there. If that is the case, then I recommend hand-washing your unmentionables with bar soap and hanging them up to air dry in a dust-free location.

No matter what may be the root of your sensitivity (including old-fashioned stress), I highly recommend all female researchers to include vaginitis treatment ointments/creams and/or pills in your sundry first-aid and medicines kits. It is as important as packing anti-itch creams and anti-diarrheal pills in my book.

Finally, to shave or not to shave?

I have vanity issues, I admit. I (unnecessarily) obsess over grooming. Should I continue to shave my legs and underarms? Hirsute woman problems. The truth is, this grooming obsession didn’t matter. There was no need to obsessively attend to whiskers above my lip or on my chin or get a pedicure or even (welp) wear deodorant. Taking cues from local women, I noticed no one shaved their legs or under their arms – at least not as obsessively as we do in the West. And everyone had dusty feet! LOL, seriously red dust was everywhere and people wore sandals or flip flops or went barefoot for many occasions and traveled long distances, too!

A week before my departure, I ran out of my solid, invisible unscented deodorant. I thought that I would just go to the drug store and buy more. Nope! I visited 4 stores and could only find was liquid roll-on anti-perspirant that was flowery smelling. It did nothing for me, but it didn’t really matter. It wasn’t uncommon to smell a ‘day’s worth of work’ on people throughout the day, but I felt uncomfortable.

These were my obsessions. However, doing these are things made me feel human, like a woman even. But it was a relief to relax my obsessive pre-occupation with my body for a while.

The take-home message is if there are some things that help you make it through the day or season, then bring them, e.g., tweezers, hand mirror, a pumice stone, or certain brand of hygiene product. Yes, most basic products are available at the local dukas or apothecaries, and prices are fair. However, the varieties are limited. There is no better way to be reminded of how first-world you are than when you ask for a single-use, fancy-pants, non-essential comfort-only products in a developing nation.

*Shabani – Shabani Lutea was my field research assistant. He works for Sokoine University of Agriculture and is experienced trapping and handling wild African Pouched rats (without gloves!) He is the most awesome field research assistant there ever was, forever branded as the Rat Whisperer, because he really is that good.

About the author

DNLee is a post-doctoral researcher at Oklahoma State University. She is currently studying African-Pouched Rats, Cricetomys gambianus, an interesting yet largely mysterious animal that uses its keen sense of smell to detect landmines. She spent summer 2012 in Morogoro, Tanzania, studying the animals in the wild and in captivity. This is DNLee’s second installment in her series for Double X Science about her field experiences in Tanzania.

Photo credit: All photos, courtesy of Danielle Lee, Ph.D. Continue reading