Videos make science personal

Educators in the digital age are always looking for great images–or they should be–as part of their educational toolbox. Whether you’re homeschooling, teaching in a college classroom, or demonstrating intellectual curiosity for your child, images evoke, and evoking is a key to making material personal and memorable. If I told you,

“Lice are vectors for the bacterium that causes typhus” 

I bet you wouldn’t remember that as well as you would,

“Napoleon started a war with an army of 500,000 men. He ended it with about 35,000. Most of them died not on the battlefield but in hospitals, from the terrible, fevered disease known as typhus. The microbe that causes typhus passed easily from man to man, even from the clothing of the dead, by way of the lice that crawled all over bodies and clothes of each and every soldier, passing along the microbe with their blood-sucking bites.” 

Now imagine that with images or video.

You can go around the Web looking for your own material, or finding videos on YouTube that might be a fit–albeit awkward–for what you’re teaching. I’ve had ups and downs with YouTube. My most memorable–and thus best learned–experience was spontaneously selecting a video for a college science class, one that seemed to illustrate sperm traveling through the Fallopian tube. I chose the video in the moment, hoping for a good visual example, only to find that in the video, the cartoon sperm travels for a long time before pausing, completely lost, and the words advertising a convention for Norwegian male homosexuals appeared on screen. 

My students (most of them) and I thought that was hysterical, and humor can be a good way to embed information in one’s mind. But…not everyone wants to stumble accidentally into that sort of comedy.

If you’re in the market for accessible, education friendly science videos, a great place to go is BrainPop. They have a few science videos available for free, including one about my childhood science heroine, Jane Goodall (more on her this coming Thursday). Or, you can subscribe–as a family, school, or other entity–for a year’s worth of their offerings. A family subscription for videos covering grade levels 3 and above and topics from social studies to science costs $99, and monthly payments are an option. If that’s out of range for you, the free offerings in the many subjects they cover will still keep you busy.

I homeschool two of my sons. A daily part of their curriculum is the daily BrainPop video. They love them, and BrainPop gives them an optional quiz after every video and tracks their scores. The videos are so engaging that both of them can tell me details and facts after they’ve watched on that I’m sure they’d never have remembered had I presented them the dead-tree version of the information or, even less exciting for them, a lecture from Mom.

Speaking of moms and science, yesterday’s video was about Marie Curie (preview here), in honor of her birthday. Among her many accolades, Curie received two Nobel prizes, one in chemistry and the other in physics. What may not be as well known is that she also was a science mom, one whose own daughter, Irene Joliot-Curie, also won a Nobel prize in chemistry, in 1935. 

It’s not always that a mother passes a love of science onto her children or that a child with a love of science has a mother who is a scientist. And indeed, the sex of the scientist in this case didn’t seem to matter to my 10-year-old son. After he watched the BrainPop video about Marie Curie, he couldn’t stop enthusing about her and her accomplishments for the rest of the day.

That takes me to my final question, and hints at what Thursday’s original contribution will focus on: Who were your inspirations in science?

Wordless Wednesday: Best video from space–EVAR

This is a time-lapse video of images captured from the International Space Station from August to October 2011. You’ll see the auroras (borealis for the north, australis for the south) and, well, the entire island Earth. Bora Zivkovic, blog editor at Scientific American posted this last month. According to Bora, we owe thanks to Ron Garan, the photographer and astronaut who took the pictures and to Michael König for editing them into this lovely visual voyage. Enjoy!

Biology Explainer: The big 4 building blocks of life–carbohydrates, fats, proteins, and nucleic acids

The short version
  • The four basic categories of molecules for building life are carbohydrates, lipids, proteins, and nucleic acids.
  • Carbohydrates serve many purposes, from energy to structure to chemical communication, as monomers or polymers.
  • Lipids, which are hydrophobic, also have different purposes, including energy storage, structure, and signaling.
  • Proteins, made of amino acids in up to four structural levels, are involved in just about every process of life.                                                                                                      
  • The nucleic acids DNA and RNA consist of four nucleotide building blocks, and each has different purposes.
The longer version
Life is so diverse and unwieldy, it may surprise you to learn that we can break it down into four basic categories of molecules. Possibly even more implausible is the fact that two of these categories of large molecules themselves break down into a surprisingly small number of building blocks. The proteins that make up all of the living things on this planet and ensure their appropriate structure and smooth function consist of only 20 different kinds of building blocks. Nucleic acids, specifically DNA, are even more basic: only four different kinds of molecules provide the materials to build the countless different genetic codes that translate into all the different walking, swimming, crawling, oozing, and/or photosynthesizing organisms that populate the third rock from the Sun.


Big Molecules with Small Building Blocks

The functional groups, assembled into building blocks on backbones of carbon atoms, can be bonded together to yield large molecules that we classify into four basic categories. These molecules, in many different permutations, are the basis for the diversity that we see among living things. They can consist of thousands of atoms, but only a handful of different kinds of atoms form them. It’s like building apartment buildings using a small selection of different materials: bricks, mortar, iron, glass, and wood. Arranged in different ways, these few materials can yield a huge variety of structures.

We encountered functional groups and the SPHONC in Chapter 3. These components form the four categories of molecules of life. These Big Four biological molecules are carbohydrates, lipids, proteins, and nucleic acids. They can have many roles, from giving an organism structure to being involved in one of the millions of processes of living. Let’s meet each category individually and discover the basic roles of each in the structure and function of life.

You have met carbohydrates before, whether you know it or not. We refer to them casually as “sugars,” molecules made of carbon, hydrogen, and oxygen. A sugar molecule has a carbon backbone, usually five or six carbons in the ones we’ll discuss here, but it can be as few as three. Sugar molecules can link together in pairs or in chains or branching “trees,” either for structure or energy storage.

When you look on a nutrition label, you’ll see reference to “sugars.” That term includes carbohydrates that provide energy, which we get from breaking the chemical bonds in a sugar called glucose. The “sugars” on a nutrition label also include those that give structure to a plant, which we call fiber. Both are important nutrients for people.

Sugars serve many purposes. They give crunch to the cell walls of a plant or the exoskeleton of a beetle and chemical energy to the marathon runner. When attached to other molecules, like proteins or fats, they aid in communication between cells. But before we get any further into their uses, let’s talk structure.

The sugars we encounter most in basic biology have their five or six carbons linked together in a ring. There’s no need to dive deep into organic chemistry, but there are a couple of essential things to know to interpret the standard representations of these molecules.

Check out the sugars depicted in the figure. The top-left molecule, glucose, has six carbons, which have been numbered. The sugar to its right is the same glucose, with all but one “C” removed. The other five carbons are still there but are inferred using the conventions of organic chemistry: Anywhere there is a corner, there’s a carbon unless otherwise indicated. It might be a good exercise for you to add in a “C” over each corner so that you gain a good understanding of this convention. You should end up adding in five carbon symbols; the sixth is already given because that is conventionally included when it occurs outside of the ring.

On the left is a glucose with all of its carbons indicated. They’re also numbered, which is important to understand now for information that comes later. On the right is the same molecule, glucose, without the carbons indicated (except for the sixth one). Wherever there is a corner, there is a carbon, unless otherwise indicated (as with the oxygen). On the bottom left is ribose, the sugar found in RNA. The sugar on the bottom right is deoxyribose. Note that at carbon 2 (*), the ribose and deoxyribose differ by a single oxygen.

The lower left sugar in the figure is a ribose. In this depiction, the carbons, except the one outside of the ring, have not been drawn in, and they are not numbered. This is the standard way sugars are presented in texts. Can you tell how many carbons there are in this sugar? Count the corners and don’t forget the one that’s already indicated!

If you said “five,” you are right. Ribose is a pentose (pent = five) and happens to be the sugar present in ribonucleic acid, or RNA. Think to yourself what the sugar might be in deoxyribonucleic acid, or DNA. If you thought, deoxyribose, you’d be right.

The fourth sugar given in the figure is a deoxyribose. In organic chemistry, it’s not enough to know that corners indicate carbons. Each carbon also has a specific number, which becomes important in discussions of nucleic acids. Luckily, we get to keep our carbon counting pretty simple in basic biology. To count carbons, you start with the carbon to the right of the non-carbon corner of the molecule. The deoxyribose or ribose always looks to me like a little cupcake with a cherry on top. The “cherry” is an oxygen. To the right of that oxygen, we start counting carbons, so that corner to the right of the “cherry” is the first carbon. Now, keep counting. Here’s a little test: What is hanging down from carbon 2 of the deoxyribose?

If you said a hydrogen (H), you are right! Now, compare the deoxyribose to the ribose. Do you see the difference in what hangs off of the carbon 2 of each sugar? You’ll see that the carbon 2 of ribose has an –OH, rather than an H. The reason the deoxyribose is called that is because the O on the second carbon of the ribose has been removed, leaving a “deoxyed” ribose. This tiny distinction between the sugars used in DNA and RNA is significant enough in biology that we use it to distinguish the two nucleic acids.

In fact, these subtle differences in sugars mean big differences for many biological molecules. Below, you’ll find a couple of ways that apparently small changes in a sugar molecule can mean big changes in what it does. These little changes make the difference between a delicious sugar cookie and the crunchy exoskeleton of a dung beetle.

Sugar and Fuel

A marathon runner keeps fuel on hand in the form of “carbs,” or sugars. These fuels provide the marathoner’s straining body with the energy it needs to keep the muscles pumping. When we take in sugar like this, it often comes in the form of glucose molecules attached together in a polymer called starch. We are especially equipped to start breaking off individual glucose molecules the minute we start chewing on a starch.

Double X Extra: A monomer is a building block (mono = one) and a polymer is a chain of monomers. With a few dozen monomers or building blocks, we get millions of different polymers. That may sound nutty until you think of the infinity of values that can be built using only the numbers 0 through 9 as building blocks or the intricate programming that is done using only a binary code of zeros and ones in different combinations.

Our bodies then can rapidly take the single molecules, or monomers, into cells and crack open the chemical bonds to transform the energy for use. The bonds of a sugar are packed with chemical energy that we capture to build a different kind of energy-containing molecule that our muscles access easily. Most species rely on this process of capturing energy from sugars and transforming it for specific purposes.

Polysaccharides: Fuel and Form

Plants use the Sun’s energy to make their own glucose, and starch is actually a plant’s way of storing up that sugar. Potatoes, for example, are quite good at packing away tons of glucose molecules and are known to dieticians as a “starchy” vegetable. The glucose molecules in starch are packed fairly closely together. A string of sugar molecules bonded together through dehydration synthesis, as they are in starch, is a polymer called a polysaccharide (poly = many; saccharide = sugar). When the monomers of the polysaccharide are released, as when our bodies break them up, the reaction that releases them is called hydrolysis.

Double X Extra: The specific reaction that hooks one monomer to another in a covalent bond is called dehydration synthesis because in making the bond–synthesizing the larger molecule–a molecule of water is removed (dehydration). The reverse is hydrolysis (hydro = water; lysis = breaking), which breaks the covalent bond by the addition of a molecule of water.

Although plants make their own glucose and animals acquire it by eating the plants, animals can also package away the glucose they eat for later use. Animals, including humans, store glucose in a polysaccharide called glycogen, which is more branched than starch. In us, we build this energy reserve primarily in the liver and access it when our glucose levels drop.

Whether starch or glycogen, the glucose molecules that are stored are bonded together so that all of the molecules are oriented the same way. If you view the sixth carbon of the glucose to be a “carbon flag,” you’ll see in the figure that all of the glucose molecules in starch are oriented with their carbon flags on the upper left.

The orientation of monomers of glucose in polysaccharides can make a big difference in the use of the polymer. The glucoses in the molecule on the top are all oriented “up” and form starch. The glucoses in the molecule on the bottom alternate orientation to form cellulose, which is quite different in its function from starch.

Storing up sugars for fuel and using them as fuel isn’t the end of the uses of sugar. In fact, sugars serve as structural molecules in a huge variety of organisms, including fungi, bacteria, plants, and insects.

The primary structural role of a sugar is as a component of the cell wall, giving the organism support against gravity. In plants, the familiar old glucose molecule serves as one building block of the plant cell wall, but with a catch: The molecules are oriented in an alternating up-down fashion. The resulting structural sugar is called cellulose.

That simple difference in orientation means the difference between a polysaccharide as fuel for us and a polysaccharide as structure. Insects take it step further with the polysaccharide that makes up their exoskeleton, or outer shell. Once again, the building block is glucose, arranged as it is in cellulose, in an alternating conformation. But in insects, each glucose has a little extra added on, a chemical group called an N-acetyl group. This addition of a single functional group alters the use of cellulose and turns it into a structural molecule that gives bugs that special crunchy sound when you accidentally…ahem…step on them.

These variations on the simple theme of a basic carbon-ring-as-building-block occur again and again in biological systems. In addition to serving roles in structure and as fuel, sugars also play a role in function. The attachment of subtly different sugar molecules to a protein or a lipid is one way cells communicate chemically with one another in refined, regulated interactions. It’s as though the cells talk with each other using a specialized, sugar-based vocabulary. Typically, cells display these sugary messages to the outside world, making them available to other cells that can recognize the molecular language.

Lipids: The Fatty Trifecta

Starch makes for good, accessible fuel, something that we immediately attack chemically and break up for quick energy. But fats are energy that we are supposed to bank away for a good long time and break out in times of deprivation. Like sugars, fats serve several purposes, including as a dense source of energy and as a universal structural component of cell membranes everywhere.

Fats: the Good, the Bad, the Neutral

Turn again to a nutrition label, and you’ll see a few references to fats, also known as lipids. (Fats are slightly less confusing that sugars in that they have only two names.) The label may break down fats into categories, including trans fats, saturated fats, unsaturated fats, and cholesterol. You may have learned that trans fats are “bad” and that there is good cholesterol and bad cholesterol, but what does it all mean?

Let’s start with what we mean when we say saturated fat. The question is, saturated with what? There is a specific kind of dietary fat call the triglyceride. As its name implies, it has a structural motif in which something is repeated three times. That something is a chain of carbons and hydrogens, hanging off in triplicate from a head made of glycerol, as the figure shows.  Those three carbon-hydrogen chains, or fatty acids, are the “tri” in a triglyceride. Chains like this can be many carbons long.

Double X Extra: We call a fatty acid a fatty acid because it’s got a carboxylic acid attached to a fatty tail. A triglyceride consists of three of these fatty acids attached to a molecule called glycerol. Our dietary fat primarily consists of these triglycerides.

Triglycerides come in several forms. You may recall that carbon can form several different kinds of bonds, including single bonds, as with hydrogen, and double bonds, as with itself. A chain of carbon and hydrogens can have every single available carbon bond taken by a hydrogen in single covalent bond. This scenario of hydrogen saturation yields a saturated fat. The fat is saturated to its fullest with every covalent bond taken by hydrogens single bonded to the carbons.

Saturated fats have predictable characteristics. They lie flat easily and stick to each other, meaning that at room temperature, they form a dense solid. You will realize this if you find a little bit of fat on you to pinch. Does it feel pretty solid? That’s because animal fat is saturated fat. The fat on a steak is also solid at room temperature, and in fact, it takes a pretty high heat to loosen it up enough to become liquid. Animals are not the only organisms that produce saturated fat–avocados and coconuts also are known for their saturated fat content.

The top graphic above depicts a triglyceride with the glycerol, acid, and three hydrocarbon tails. The tails of this saturated fat, with every possible hydrogen space occupied, lie comparatively flat on one another, and this kind of fat is solid at room temperature. The fat on the bottom, however, is unsaturated, with bends or kinks wherever two carbons have double bonded, booting a couple of hydrogens and making this fat unsaturated, or lacking some hydrogens. Because of the space between the bumps, this fat is probably not solid at room temperature, but liquid.

You can probably now guess what an unsaturated fat is–one that has one or more hydrogens missing. Instead of single bonding with hydrogens at every available space, two or more carbons in an unsaturated fat chain will form a double bond with carbon, leaving no space for a hydrogen. Because some carbons in the chain share two pairs of electrons, they physically draw closer to one another than they do in a single bond. This tighter bonding result in a “kink” in the fatty acid chain.

In a fat with these kinks, the three fatty acids don’t lie as densely packed with each other as they do in a saturated fat. The kinks leave spaces between them. Thus, unsaturated fats are less dense than saturated fats and often will be liquid at room temperature. A good example of a liquid unsaturated fat at room temperature is canola oil.

A few decades ago, food scientists discovered that unsaturated fats could be resaturated or hydrogenated to behave more like saturated fats and have a longer shelf life. The process of hydrogenation–adding in hydrogens–yields trans fat. This kind of processed fat is now frowned upon and is being removed from many foods because of its associations with adverse health effects. If you check a food label and it lists among the ingredients “partially hydrogenated” oils, that can mean that the food contains trans fat.

Double X Extra: A triglyceride can have up to three different fatty acids attached to it. Canola oil, for example, consists primarily of oleic acid, linoleic acid, and linolenic acid, all of which are unsaturated fatty acids with 18 carbons in their chains.

Why do we take in fat anyway? Fat is a necessary nutrient for everything from our nervous systems to our circulatory health. It also, under appropriate conditions, is an excellent way to store up densely packaged energy for the times when stores are running low. We really can’t live very well without it.

Phospholipids: An Abundant Fat

You may have heard that oil and water don’t mix, and indeed, it is something you can observe for yourself. Drop a pat of butter–pure saturated fat–into a bowl of water and watch it just sit there. Even if you try mixing it with a spoon, it will just sit there. Now, drop a spoon of salt into the water and stir it a bit. The salt seems to vanish. You’ve just illustrated the difference between a water-fearing (hydrophobic) and a water-loving (hydrophilic) substance.

Generally speaking, compounds that have an unequal sharing of electrons (like ions or anything with a covalent bond between oxygen and hydrogen or nitrogen and hydrogen) will be hydrophilic. The reason is that a charge or an unequal electron sharing gives the molecule polarity that allows it to interact with water through hydrogen bonds. A fat, however, consists largely of hydrogen and carbon in those long chains. Carbon and hydrogen have roughly equivalent electronegativities, and their electron-sharing relationship is relatively nonpolar. Fat, lacking in polarity, doesn’t interact with water. As the butter demonstrated, it just sits there.

There is one exception to that little maxim about fat and water, and that exception is the phospholipid. This lipid has a special structure that makes it just right for the job it does: forming the membranes of cells. A phospholipid consists of a polar phosphate head–P and O don’t share equally–and a couple of nonpolar hydrocarbon tails, as the figure shows. If you look at the figure, you’ll see that one of the two tails has a little kick in it, thanks to a double bond between the two carbons there.

Phospholipids form a double layer and are the major structural components of cell membranes. Their bend, or kick, in one of the hydrocarbon tails helps ensure fluidity of the cell membrane. The molecules are bipolar, with hydrophilic heads for interacting with the internal and external watery environments of the cell and hydrophobic tails that help cell membranes behave as general security guards.

The kick and the bipolar (hydrophobic and hydrophilic) nature of the phospholipid make it the perfect molecule for building a cell membrane. A cell needs a watery outside to survive. It also needs a watery inside to survive. Thus, it must face the inside and outside worlds with something that interacts well with water. But it also must protect itself against unwanted intruders, providing a barrier that keeps unwanted things out and keeps necessary molecules in.

Phospholipids achieve it all. They assemble into a double layer around a cell but orient to allow interaction with the watery external and internal environments. On the layer facing the inside of the cell, the phospholipids orient their polar, hydrophilic heads to the watery inner environment and their tails away from it. On the layer to the outside of the cell, they do the same.
As the figure shows, the result is a double layer of phospholipids with each layer facing a polar, hydrophilic head to the watery environments. The tails of each layer face one another. They form a hydrophobic, fatty moat around a cell that serves as a general gatekeeper, much in the way that your skin does for you. Charged particles cannot simply slip across this fatty moat because they can’t interact with it. And to keep the fat fluid, one tail of each phospholipid has that little kick, giving the cell membrane a fluid, liquidy flow and keeping it from being solid and unforgiving at temperatures in which cells thrive.

Steroids: Here to Pump You Up?

Our final molecule in the lipid fatty trifecta is cholesterol. As you may have heard, there are a few different kinds of cholesterol, some of which we consider to be “good” and some of which is “bad.” The good cholesterol, high-density lipoprotein, or HDL, in part helps us out because it removes the bad cholesterol, low-density lipoprotein or LDL, from our blood. The presence of LDL is associated with inflammation of the lining of the blood vessels, which can lead to a variety of health problems.

But cholesterol has some other reasons for existing. One of its roles is in the maintenance of cell membrane fluidity. Cholesterol is inserted throughout the lipid bilayer and serves as a block to the fatty tails that might otherwise stick together and become a bit too solid.

Cholesterol’s other starring role as a lipid is as the starting molecule for a class of hormones we called steroids or steroid hormones. With a few snips here and additions there, cholesterol can be changed into the steroid hormones progesterone, testosterone, or estrogen. These molecules look quite similar, but they play very different roles in organisms. Testosterone, for example, generally masculinizes vertebrates (animals with backbones), while progesterone and estrogen play a role in regulating the ovulatory cycle.

Double X Extra: A hormone is a blood-borne signaling molecule. It can be lipid based, like testosterone, or short protein, like insulin.


As you progress through learning biology, one thing will become more and more clear: Most cells function primarily as protein factories. It may surprise you to learn that proteins, which we often talk about in terms of food intake, are the fundamental molecule of many of life’s processes. Enzymes, for example, form a single broad category of proteins, but there are millions of them, each one governing a small step in the molecular pathways that are required for living.

Levels of Structure

Amino acids are the building blocks of proteins. A few amino acids strung together is called a peptide, while many many peptides linked together form a polypeptide. When many amino acids strung together interact with each other to form a properly folded molecule, we call that molecule a protein.

For a string of amino acids to ultimately fold up into an active protein, they must first be assembled in the correct order. The code for their assembly lies in the DNA, but once that code has been read and the amino acid chain built, we call that simple, unfolded chain the primary structure of the protein.

This chain can consist of hundreds of amino acids that interact all along the sequence. Some amino acids are hydrophobic and some are hydrophilic. In this context, like interacts best with like, so the hydrophobic amino acids will interact with one another, and the hydrophilic amino acids will interact together. As these contacts occur along the string of molecules, different conformations will arise in different parts of the chain. We call these different conformations along the amino acid chain the protein’s secondary structure.

Once those interactions have occurred, the protein can fold into its final, or tertiary structure and be ready to serve as an active participant in cellular processes. To achieve the tertiary structure, the amino acid chain’s secondary interactions must usually be ongoing, and the pH, temperature, and salt balance must be just right to facilitate the folding. This tertiary folding takes place through interactions of the secondary structures along the different parts of the amino acid chain.

The final product is a properly folded protein. If we could see it with the naked eye, it might look a lot like a wadded up string of pearls, but that “wadded up” look is misleading. Protein folding is a carefully regulated process that is determined at its core by the amino acids in the chain: their hydrophobicity and hydrophilicity and how they interact together.

In many instances, however, a complete protein consists of more than one amino acid chain, and the complete protein has two or more interacting strings of amino acids. A good example is hemoglobin in red blood cells. Its job is to grab oxygen and deliver it to the body’s tissues. A complete hemoglobin protein consists of four separate amino acid chains all properly folded into their tertiary structures and interacting as a single unit. In cases like this involving two or more interacting amino acid chains, we say that the final protein has a quaternary structure. Some proteins can consist of as many as a dozen interacting chains, behaving as a single protein unit.

A Plethora of Purposes

What does a protein do? Let us count the ways. Really, that’s almost impossible because proteins do just about everything. Some of them tag things. Some of them destroy things. Some of them protect. Some mark cells as “self.” Some serve as structural materials, while others are highways or motors. They aid in communication, they operate as signaling molecules, they transfer molecules and cut them up, they interact with each other in complex, interrelated pathways to build things up and break things down. They regulate genes and package DNA, and they regulate and package each other.

As described above, proteins are the final folded arrangement of a string of amino acids. One way we obtain these building blocks for the millions of proteins our bodies make is through our diet. You may hear about foods that are high in protein or people eating high-protein diets to build muscle. When we take in those proteins, we can break them apart and use the amino acids that make them up to build proteins of our own.

Nucleic Acids

How does a cell know which proteins to make? It has a code for building them, one that is especially guarded in a cellular vault in our cells called the nucleus. This code is deoxyribonucleic acid, or DNA. The cell makes a copy of this code and send it out to specialized structures that read it and build proteins based on what they read. As with any code, a typo–a mutation–can result in a message that doesn’t make as much sense. When the code gets changed, sometimes, the protein that the cell builds using that code will be changed, too.

Biohazard!The names associated with nucleic acids can be confusing because they all start with nucle-. It may seem obvious or easy now, but a brain freeze on a test could mix you up. You need to fix in your mind that the shorter term (10 letters, four syllables), nucleotide, refers to the smaller molecule, the three-part building block. The longer term (12 characters, including the space, and five syllables), nucleic acid, which is inherent in the names DNA and RNA, designates the big, long molecule.

DNA vs. RNA: A Matter of Structure

DNA and its nucleic acid cousin, ribonucleic acid, or RNA, are both made of the same kinds of building blocks. These building blocks are called nucleotides. Each nucleotide consists of three parts: a sugar (ribose for RNA and deoxyribose for DNA), a phosphate, and a nitrogenous base. In DNA, every nucleotide has identical sugars and phosphates, and in RNA, the sugar and phosphate are also the same for every nucleotide.

So what’s different? The nitrogenous bases. DNA has a set of four to use as its coding alphabet. These are the purines, adenine and guanine, and the pyrimidines, thymine and cytosine. The nucleotides are abbreviated by their initial letters as A, G, T, and C. From variations in the arrangement and number of these four molecules, all of the diversity of life arises. Just four different types of the nucleotide building blocks, and we have you, bacteria, wombats, and blue whales.

RNA is also basic at its core, consisting of only four different nucleotides. In fact, it uses three of the same nitrogenous bases as DNA–A, G, and C–but it substitutes a base called uracil (U) where DNA uses thymine. Uracil is a pyrimidine.

DNA vs. RNA: Function Wars

An interesting thing about the nitrogenous bases of the nucleotides is that they pair with each other, using hydrogen bonds, in a predictable way. An adenine will almost always bond with a thymine in DNA or a uracil in RNA, and cytosine and guanine will almost always bond with each other. This pairing capacity allows the cell to use a sequence of DNA and build either a new DNA sequence, using the old one as a template, or build an RNA sequence to make a copy of the DNA.

These two different uses of A-T/U and C-G base pairing serve two different purposes. DNA is copied into DNA usually when a cell is preparing to divide and needs two complete sets of DNA for the new cells. DNA is copied into RNA when the cell needs to send the code out of the vault so proteins can be built. The DNA stays safely where it belongs.

RNA is really a nucleic acid jack-of-all-trades. It not only serves as the copy of the DNA but also is the main component of the two types of cellular workers that read that copy and build proteins from it. At one point in this process, the three types of RNA come together in protein assembly to make sure the job is done right.

 By Emily Willingham, DXS managing editor 
This material originally appeared in similar form in Emily Willingham’s Complete Idiot’s Guide to College Biology

Friday Roundup: Land-walking octopus, he’s having a baby, defining veggies, & lots for the ladies

Post-Thanksgiving links: All about food…or sorta food

  • You made it through Thanksgiving even though you ran out of vanilla extract? Let science help you out the next time you fall short of that one important ingredient. Scientists have compiled a list of suitable substitutes for cooks everywhere. 
  • Did you wake up this morning with fingers twice their normal size? Find out where the salt was in that Thanksgiving meal. 
  • Is pepper spray a vegetable? Oh, for the days when pizza sauce and ketchup were the only faux veggies. Here’s more on pepper spray from this week’s Double X Science blog of the week author, Deborah Blum. 

Speaking of pepper spray, science answers your burning questions

  • Plants flirt, play hard to get, embrace. Yes, that said “plants.” 
  • He’s having a baby! Carin Bondar tells us all about the world of seahorse paternal birth.
  • Chilean desert coughs up fossil whale family, puzzles scientists. Tiny scientist, huge whale fossil at link
  • Oh, those mysterious cows. Why do they come home? More important, why do they (maybe) line up along the Earth’s magnetic field, and why do scientists argue about it?
  • Asking, “Are you improbable or inevitable?”, Robert Krulwich tells us that the math determines that we are improbable. But we’re here, so aren’t we…inevitable?
  • Have you read about “the gene” for ADHD or the “drinking gene”? Stop reading that bad writing! There’s a difference between a trait that a gene confers and the many, many ways someone can manifest that trait. Read more from David Dobbs over at Neuron Culture in “Enough with the ‘slut gene’ already: Behaviors ain’t traits.” 
  • Science: It’s not all glamour and heels. Here’s a day in the life of a scientist in Australia for those who are wondering what a scientist might do all day.
  • Speaking of how scientists might spend their days, how about spending them watching 400 YouTube videos of dogs chasing their tails? Via DiscoBlog at Discover Science.
Geek o’rama
  • Use this app to follow live cameras trained on the wild places animals live in Sri Lanka, Kenya, the UK, and other places. When you spot an animal, identify it for science. Via GeekDad at Wired, Citizen science from Instant Wild! The featured Webcam as we posted these links had captured a porcupine in action. 
  • Maybe you’ve never been in a lab in your life and wouldn’t know PCR from a VCR. That doesn’t matter when you watch this video of stop-motion animation using thousands and thousands of the tiny tubes scientists use when they conduct PCR (polymerase chain reaction). The video is actually a promotional video from vendors of equipment for this kind of lab test.

  • Conditions in Antarctica are almost unimaginable inhospitable for humans, yet scientists visit there yearly to conduct valuable research. Valuable, dangerous research, but the scenery? Stunning. Via BoingBoing. 

Hey, ladies!

  • The brain is encased in a skull for protection, with a nice fluid surrounding it for extra cushioning. But the human brain was never meant to endure years of the Newtonian physical pounding that comes with playing football. Now, researchers are beginning a brain study to test the brains of 100 former National Football League players to see what harm has been done and how to identify it early. Watch the video below. Imagine the brains inside those skulls. Recall that for every action, there is an equal and opposite reaction. Yikes.

  • Most parents find letting go difficult, whether it’s when their child leaves for a week-long school trip or takes off for college. Add an autism spectrum condition to the mix, and what you get is a heartbreaking but heartfelt connection between mother and son that they both find difficult to stretch. 
  • Have you banked cord blood? Here’s why cord blood banking may not have the payoff you expect
  • You’ve done it. We’ve done it. You walk from one room to another on a mission and when you get into the other room…you forget why you’re there. Now, instead of blaming age, you can blame the door
  • Look around: Do you a see a lot of stuff you just can’t bring yourself to throw away? Read this.
  • When it comes to sex–studies of it, studies of how it develops–males get a lot of the attention, and the female sex has even (gasp) been referred to as the “default” sex, as in, if there aren’t signals to become male, then females develop by default. That ain’t true, and as it turns out, females have a pathway dedicated to developing and maintaining them just as males do. So there, scientists. 
  • Is it hard for women to self promote? This one is about academe, but it applies across many work places.
  • Speaking of workplaces, apparently the women of Generation Y are still facing discrimination there [PDF]. 
  • People (in UK, at least) still think antibiotics work against colds. They don’t. 
  • You may have read about this person’s efforts to perform a butt injection on a woman using “Fix a Flat.” It’s probably best to just love your butt for what it is, which isn’t Fix a Flat.
  • In smarter news, NASA is rolling out Aspire 2 Inspire, targeting girls interested in science. Know a girl who’s interested in science? You can start with the Aspire 2 Inspire video below about women in science:

“Yet more must be done to address the projected shortfall of 280,000 math and science teachers that our nation will face by 2015. We need public and private investments in math and science education and we need a commitment to making a difference on a national scale.”

She couldn’t be more right. 

Blog of the Week: PsiVid with Carin Bondar and Joanne Manaster

This week’s blog selection comes to us via the Scientific American blog network. PsiVid, a “cross-section of science on the cyber-stream,” features two scientists and mothers, Carin Bondar and Joanne Manaster, both known for their work and expertise in sci-filmmaking. Over at their Scientific American blog, you’ll find all things sci-video related, including contest information, the Monday music video, and some commentary on what’s happening–and not happening–in the world of science videos.

Carin Bondar, biologist and mother of four, is indeed a biologist with a twist, as her Website will tell you. She’s a formally trained ballet dancer, a video star (proving that yes, bionerds can be smart and videogenic), scifilm curator, and writer. Her Website includes postings of Cool Biology Job of the Week, the kinds of jobs that make you briefly wish you could turn back time, ditch everything you own, and hop on board. If you’re a parent nurturing the little scientist in your life, just reading some of these job descriptions to them should prove inspiring.

Like many of us, Carin confesses to having been “in love with biology” since she was a little girl. Her love has led her to her multiple careers as filmmaker and writer, and she still brings the biology through her insightful dissections of topics like chastity belts and cross-dressing in the animal kingdom. 

If you’d like to at least try to keep up with this whirling–pirouetting?–dervish of a scientist and mother, you can follow Carin on Twitter @drbondar. She’s smart, funny, engaging, kind, and lovely. Don’t miss out.

Joanne Manaster is a biologist, mom, and former model who, like Carin, defies any lingering stereotype of biologists as bald, bearded men in white coats. Her Website, aptly named “Joanne loves science,” includes Joanne’s famous video book reviews, posts about the science of beauty, and Joanne’s own favorite makeup videos

When she’s not in front of a camera improving science literacy, Joanne is a lecturer in cell and molecular biology at the University of Illinois. She’s a veteran science instructor who now focuses on developing and teaching online science courses for current and future science teachers. Joanne is rather notorious for her videos that make science seem delicious, including gummi bear science and blood cell bakery–they’re cookies! In her clearly limited spare time, Joanne also runs a girls bioengineering camp and, as she says, does everything she can “to ensure that her four children all become passionate about something.” An important goal.

To follow this passionate advocate for science literacy who puts her videos–and cookies–where her mind is, you can find her as @sciencegoddess on Twitter.

Hey Science, "How YOU doin’?"

(Guest post by Summer Ash, astrophysicist, writer, and Close Personal Friend of Neil DeGrasse Tyson. Follow her on Twitter: @Summer_Ash .)
There have been and will be much more eloquent (and rage filled) responses to this video, but for now I just want to add my voice to the dumbfounded chorus of scientists who woke up to this insanity this morning:

It’s like the only way to correct the stereotype of science being done by old guys in white lab coats with bad hair is to yank the pendulum so far in the other direction and imply that science can also be done by preteens dressed like streetwalkers. Nay, not only can, but is! 
Now while I have an admittedly large obsession with fashion, and shoes in particular, it’s not representative of how most women dress for work. So why the hell is it being presented as how all women scientists should dress?
The real shame is that this flashy (and hideous) video is now the public face for what seems to be a worthwhile, and even well-produced in places, campaign by the European Union to encourage more girls to go into science. There are currently twelve profiles of real women scientists at various stages in their career that are worth watching with any clever young girls you know. Just hit the stop button before the catch phrase/website address gets written in lipstick across the screen at the end of each one.
For me the most important take away is that there exists a spectrum of not only women, but people, in science. There is no mold. It’s not a “guy thing”, but it’s not a “girl thing” either. Anyone with the passion, motivation, and dedication can become a scientist. I called my (neglected as of late) blog “Newtonianism for the Ladies” not because science needs to be dumbed down or spoon fed to women, but after a book by the same title written in 1737 by Francesco Algarotti. Algarotti wrote the book to help spread Newton’s ideas on the nature of light and optics to women of the upper class who were only beginning to be educated. The book was also one of the main channels through which Newtonianism reached the general public in continental Europe.
And yet in the intervening centuries, we’ve gone from ‘science for all’ to ‘science: it’s a girl thing’. And instead of science trying to attract girls, we’ve got girls trying to attract science like it’s some kind of horny john. The defense that this video is just a teaser for the “real” campaign on the subsequent pages of the website (some of which aren’t even up yet) is laughable. Based on the logo alone, it’s clear that they are digging in their 4″ heels on this approach. Which is just so damn frustrating when good intentions and good materials are likely to get lost in the backlash. 
Now excuse me while I go channel my rage into some astrophysics.

(Ed: after the huge outcry from scientists, the offending video has been removed from the EU site.)

These views are the opinion of the author and do not necessarily either reflect or disagree with those of the DXS editorial team.

Welcome to the 21st century and welcome to MARS

Parachutes and SKY CRANES!
Image credit: NASA. Woohoo, NASA!
by Emily Willingham, DXS managing editor, who totally stayed up to watch all of this unfold

Update: Check out below what you see in the above graphic, except that it’s a real image of the real rover with its real parachute, heading for the surface of Mars! Image by way of the Bad Astronomer, a.k.a., Phil Plait. 

Because we are freaky, geeky, and totally tweaky excited about the Mars Curiosity landing (woohoo!), today we bring you a links roundup related to this event. For some perspective–my own–I was born the year before the first people walked on the moon, an event known as the Moon Landing. That day was such a big deal that in a photo book of baby images capturing my first year, six dim Polaroid photos of the moon landing take up the entire last page, fuzzy, blurry images of our ancient Zenith television, including one of an Earth-bound Walter Cronkite (I still miss that man) wiping his face in disbelief. As someone who was born in the mid-20th century and knew and lived with people born in the 1800s, I am in awe of what I’m seeing today in the second decade of the 21st century.

You can relive that moment from 43 years ago in the video below. You might even recognize the real-life versions of some of the characters who featured in Apollo 13, one of my favorite movies. I also am a fan of Janet Armstrong’s hair in this video. The entire clip sequence is typical ’60s news television and features a strikingly young Mike Wallace. Armstrong is on the moon at around 9:39. “One small step for man… “

The moon is a mere 238,900 miles away from us. We could practically fly there on a space plane (assumes this biologist). But Mars? That’s 350 million miles. The rover we just dropped on the planet, using technology with shades of the latest Star Trek movie, will spend a planned two years roving the red planet, sending back data about what it finds. The Great Hope, of course, is that one thing it will find is signs of Life.

Now, enjoy this video of the successful Curiosity landing from the wee hours this morning. “Thumbnails complete! We’ve got thumbnails! Woohooooo!” My favorite quote: “You can see dust particles on the window!” 

Then, visit NASA’s page dedicated to the Rover Curiosity, where NASA’s posting great images from 350 million miles away.  

Our own physics editor, Matthew Francis, has a post up over at his blog, Galileo’s Pendulum, giving a personal perspective on this historic event. He’s also included links to a post by Emily Lakdawalla telling us what comes next for Curiosity and to ArsTechnica’s retrospective overview of Mars missions

The L.A. Times, near ground zero of mission control, has a lengthy piece complete with links to photo essays. Worth exploring and enjoying. 

Finally, just follow Mars Curiosity itself @MarsCuriosity (natch) and follow along at the related hashtags:

A couple of these are currently even trending on Twitter, which gives me hope for science and humanity. In that spirit, I leave you with a screenshot of this tweet from Story Collider’s Ben Lillie:

Science, FTW! We sure have come a long way since 1969, baby.

Double Xpression: Darlene Cavalier of Science Cheerleader and SciStarter

Darlene Cavalier (source)

Darlene Cavalier (Twitter) is the hard-working and seemingly tireless founder of Science Cheerleader and SciStarter. She has held executive positions at Walt Disney Publishing and worked at Discover Magazine for more than 10 years. Darlene incorporated her experience and knowledge in serving as the prinicple investigator of a $1.5 million grant from the National Science Foundation to promote basic research through partnerships with Disney and ABC TV and also has collaborated with the NSF, NBC Sports, and the NFL to produce the Science of NFL Football series. She holds a master’s degree from the University of Pennsylvania where she studied the role of the citizen in science and is herself a former Philadelphia 76ers cheerleader. In addition, she is a writer and senior adviser to Discover Magazine. You can find her full biography here.

On top of all of that, she is also mother to four children. You might be able to blame them for the two-day stomach flu Darlene was just getting over when she talked with Double X Science Managing Editor Emily Willingham about why women pursue professional cheerleading (hint: it’s much more about passion than pay), why cheerleader stereotypes are “bunk,” and why even if Science Cheerleader doesn’t lead all little girls into science, it leaves them with a message about being secure in who they are.

DXS: First, can you give me a quick overview of what your scientific background is and your current connection to science?

A: So I have no formal science degree. My connection to science is that I work and continue to work at Discover magazine. I worked there as business development coordinator, and that’s how I became reintroduced to science. I became a fan of science later in life. After working at Discover for a couple of years and having some children [Cavalier is the mother of four children], I wondered if there was a more significant role for someone like me without a formal science degree. My role at Discover had become curating science on behalf of the magazine. How do we get average public to move in the direction of science literacy?

I went to grad school at the University of Pennsylvania to look at those issues. When I met with an advisor (there), he recommended that I go for a masters in liberal arts, which made sense to me at the time. They created a curriculum for me. Most was in the history and sociology of science and some was in school of education. Piecing all of this together was a turning point for me in my life both prof and personally, I started to learn about these citizen scientists to engage nonscientific members of the public in real scientific research.

I saw huge gaps in getting people to move in that direction. Other countries were enabling citizens to take part in conversations about science policy on national levels. The U.S. didn’t have mechanism for that. That was one gap I saw. Another was people weren’t getting involved in citizen science projects…(they were) hard to find and scattered all over websites. It was a mechanism problem, not philosophical or societal. In grad school, I created a matchmaking site of all citizen science projects I was coming across. I decided to make that database public for people to add their projects, and made it searchable. There were no cheerleaders involved in science cheerleaders when I started the blog…it was about the citizen science projects and reopening this agency for public input. (It was not about) cheerleaders specifically.


DXS: So how did you end up incorporating the cheerleader aspect?

A: That was basically a fun way of using my background–it is surprising to people that I was a (Philadelphia) 76ers cheerleader. I kept it secret for long time at Discover, fearing I wouldn’t be taken seriously. I wish I hadn’t attempted (to keep it) secret; when it was “exposed” at Discover people were great about it. They thought it was pretty neat. So I became more comfortable in that role. I wanted to do a tongue-in-cheek look at this when I was starting the blog that this site really is for everyone. Citizen science projects are for everyone; it doesn’t matter if even a quote–unquote “ditzy blonde cheerleader” can do it, surely the scientists could figure it out, and the politicians.

(When the concept of Science Cheerleader really took off), we thought, “We’re on to something.” Most people loved it. Criticism came from feminist science bloggers, which I totally understand…I learned something there, too… (this idea of), “these women aren’t scientists, what are they doing?” Then I started getting emails from actual NFL NBA cheerleaders, (telling me) “I’m getting PhD in chemistry,” (and saw it as) a great way to merge two parts of my life. I could hardly believe it. I never even had thought to ask cheerleaders if they were studying any of the STEM fields.

It became cyclical. The founder of the U.S. Science and Engineering Festival called and asked Science Cheerleader to come to that festival and perform. I had to tell him I’d never met them. We got a grant from the Burroughs Wellcome fund to cover travel for 11 science cheerleaders to come to Washington and perform. They had awesome outfits, speaking roles. It was more or less an experiment. Amazing performers against a science theme routine and incredible public spokespeople.  Applying their talents of being enthusiastic about their team to science and tech careers. They were a huge hit at the festival. 

We left each one speak their own language. They’re very diverse. It helped to have that diverse makeup and watching them talk to little kids. Little girls would come up to them, almost like when you see Cinderella, would want their autographs, to touch their uniforms, feel their pompoms. It was a great opportunity to say, “We love cheerleading, but in the daytime I make cars, I’m what you call an engineer.” Some of the dads and the moms were more attracted to the team (the cheerleaders) represented, and they learned that no cheerleader makes a living on 35 bucks a game…they have professions.

We started to realize we were challenging stereotypes of scientists, cheerleaders, engineers. We have so many science cheerleaders in the database, working now with the NFL and NBA, (that) when a local event is happening, I can contact science cheerleaders in the Boston area tell them, and they can go if they want. They don’t have talking points … they say what they want to say. A Patriots cheerleader says cheerleading was great for her professional career, standards were super high for her in college. (You have to maintain) a GPA to be cheerleader and athlete, (and that) was helpful.

DXS: And you’ve encountered some criticism from feminists or women in science. How do you handle that?

A: You can’t be a science cheerleader unless you have science connection. I’m the only fraud in the group. That’s the criterion. What is different, there was so much media play…NPR, CNN, TODAY Show, you can only get across so much in a video. A couple of people took a video where someone says “go science” and assumed we’re just dressing people up as cheerleaders and sending them around to yell that. (But) there’s a lot of depth with what they do.

Many are very accomplished in their fields, going on to do research. One is getting her PhD in chemistry, working on gold nanoparticles to treat pancreatic cancer. That criticism that’s ill informed is the worst type. Putting them in a bad light and they don’t deserve it. They volunteer to do this. They do it because they really believe in it. There are an estimated 3 to 4 million cheerleaders in the US. They want to reach that group, let them know it’s OK to love math and science, (to say) here’s my experience, here’s how I learned what an engineer is, here’s what my day is like. They’re all available to be pen-pal partners. As much as we preach “don’t let other people bother you or criticism bother you,” I don’t like to see ill-informed or misinformed statements.

Q: Have you encountered situations in which your expression of yourself outside the bounds of science has led to people viewing you differently–either more positively or more negatively?

A: Yes. (What) we have is mostly anecdotal…have a number for people coming to site, watching video, we try to save emails and letters that come in from moms of little girls who just want to be cheerleaders but also are talented, and the moms feel they’re talented in math and science and grow concerned about their daughters losing that for their love of cheerleading and dance and are happy to see these role models on the site.

In terms of other positive impacts, if we just look at it from public outreach, it’s been incredible because of the media’s interest. Media interest in this, the teams themselves…it’s not easy to reach Baltimore Ravens fans w positive messages about science and tech or women and science and tech, so when the Ravens repost the interviews and tweet it to their fan base, that’s very positive.

Lines at live events are pretty long with kids lining up to get autographs from the Science Cheerleaders. We always look for local or regional citizen science activity to capitalize on that attention to get those people to do something. For example in South Texas a science and engineering festival. We did our routine, a bunch of people line up for autographs, our choreographer is the reigning Miss United States. That attracts people as I talk about a local researcher who needs their help for citizen science project. (It’s) super simple to use that attention to say “hey, by the way, you’re needed. When you see this crayfish–hold up a picture–it’s considered invasive. Here’s Dr. Zen!” He (Dr. Zen) came out and talked, while they’re waiting inline, a captive audience, and we give the Website where they can get involved.

Our sister site, is now a full-size website called SciStarter, a startup company. That was named one of Philly’s top-10 tech startups last year! It aggregates all of the citizen science projects out there. We rely on that at all of the Science Cheerleader appearances.

I can do what I know how to do, but I would love some grad student or organization that does evaluations or measures outcomes and help me learn more about the metrics, direct outcomes that can be measured, and how do I do that.

DXS: Have you found that your non-science expression of creativity/activity/etc. has in any way informed your understanding of science or how you may talk about it or present it to others?

A: It’s a great question. It’s interesting because that Science Cheerleader blog that I started with and still have–it’s a very diverse audience. There are people who came because they’re reading about their favorite teams’ cheerleaders doing cool things and that ‘s great. I’d have a lot of those types coming to the site, and they’d learn, “hmm that’s interesting I didn’t realize that’s what a chemical engineer does,” then look to their right and see, “hmmm this is happening in Boston”… and take next step from passive reader to getting involved in a citizen science project. The goal is to move them to being actively engaged citizens getting them prepared aware involved in the science policy conversation. I know that sounds so farfetched but not nearly as much as a couple of years ago.

It is not easy to talk to different audiences. I used to preach “know your audience,” but I’ve learned more from my audience than they may have from me. I consider some of the science bloggers, and they’re a part of the audience. I learned they don’t like 76ers involved without science degrees, and we responded to that. What one group likes another won’t. There’s no “one size fits all.” We try to (appeal) to a wide variety of audiences coming to site….from those interested in science policy to people who come because they want more about citizen science efforts. We can point them to these things through SciStarter.

DXS: How comfortable are you expressing your femininity and in what ways? How does this expression influence people’s perception of you in, say, a scientifically oriented context? And does that impression evolve at all?

The initial impression, even through me–and I think the Science Cheerleaders would say this too, even when I was of the Sixers…(pauses)… let’s talk motivation for a minute, why most of these women choose to become professional cheerleaders, why would you do that? The bottom line is that there are very few opportunities to continue dancing and performing once you’re out of college. My personal experience–and you’ll see this in interviews–your options are so limited, and we wanted to continue performing, usually it’s dancing. We see an audition in paper, and they’re looking for people who know how to do triple pirouettes, and the opportunity to continue to perform is there.

I wish we didn’t have to wear those uniforms when I was on the Sixers. I loved every single thing about it except for some of the uniforms. I would love for the NFL and NBA to look and say, “We didn’t realize cheerleaders felt that way and tone it down,” (but) it’s not going to happen. I encourage people to read interviews to see what motivated some of the cheerleaders. I wasn’t a gung-ho Sixers fan who wanted to do this for the team, but some people almost their whole lives dreamed of being a cheerleader for their team.

In terms of embracing being feminine, I don’t know anyone who is that 100% of the time. My hair looked decent, I wore OK clothes, but I don’t walk around like that all the time. I think that the reality of the situation is there’s no one walking around looking like a professional cheerleader all the time. I doubt that the Science Cheerleaders look like that when they go into the lab, not because they want to be taken seriously but for convenience. It s a lot of work to look like that.

I wish that the people who pave the way for these Science Cheerleaders to be exploring the careers they have now–lots are supportive and embrace them but that also happens to be where the toughest critics are embedded. They know better than anyone what it feels like to have somebody work against you. I wish they’d ease up on Science Cheerleaders and let them be all that they can be. They can relate to an audience it’s not easy for us to reach. I can’t reach those little cheerleaders out there myself, but they can, maybe through pom-poms or uniforms or a connection with the moms. It does evolve

Some teams require you to be in school full time or have a full-time job. They want smart cheerleaders because you have to be out doing public speaking so if you’re not articulate or bright…pretty girls and good dancers are a dime a dozen…your success comes down to your interview.

These Science Cheerleaders are by far way more secure in their dual roles than I was. I’m not sure why or how, but when you see them at appearances, they’re looking for ways to embrace these two roles. They’ll say in their interview, I don’t care what people in my lab think about my wearing makeup and so on, and they mean it. These women walk the walk.

DXS: If you had something you could say to the younger you, back when you weren’t so comfortable with yourself about the role of expression and creativity in your chosen career path, what would you say?

A: If I had read one of these interviews when I was, say, in fifth grade, and I read one of those Science Cheerleader interviews, it would resonate w me in a different way. It might not have an impact on me personally when I was a kid…the cheerleaders on our team, we were athletes. Most cheerleaders are leaders in their schools, involved in leadership and academics, student government. The stereotype is total bunk. 

I can tell you that in some point in my life, I can think back to times, like my first big job at Discover, had I read these interviews as a kid, I may have felt more comfortable about being authentic about every aspect of me. 

To use the Pop Warner example, we set a world record with them, 1300 little cheerleaders cheering for science for five minutes. I have a sneaking suspicion that fast forward 10 years from now, they might be interviewed, by you maybe, about how they got interested in science, and they might say, when I as in 8th grade, I got called in to do this science cheer thing, and it opened my eyes to science as a valid career. If it doesn’t happen at a young age for some of these girls, they might reflect back to something they experienced science cheerleading and feel entitled to embrace all that they are and feel good about that.
See the Science Cheerleaders in action at the Science and Engineering Festival:

By Emily Willingham, DXS managing editor